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ABSTRACT 

The main focus of this research is the development of a technique to remotely 

characterize aerosol properties, such as particle size distribution, concentration, and refractive 

index as a function of wavelength, through the analysis of optical scattering measurements.  The 

proposed technique is an extension of the multistatic polarization ratio technique that has been 

developed by prior students at the Penn State Lidar Lab to include multiple wavelengths.  This 

approach uses the ratio of polarized components of the scattering phase functions at multiple 

wavelengths across the visible region of the electromagnetic spectrum to extract the 

microphysical and optical properties of aerosols.  The scattering intensities at each wavelength 

are vertically separated across the face of the imager using a transmission diffraction grating, so 

that scattering intensities for multiple wavelengths at many angles are available for analysis in a 

single image.  The ratio of the scattering phase function intensities collected using parallel and 

perpendicular polarized light are formed for each wavelength and analysis of the ratio is used to 

determine the microphysical properties of the aerosols.  

One contribution of the present work is the development of an inversion technique based 

on a genetic algorithm that retrieves lognormal size distributions from scattering measurements 

by minimizing the squared error between measured polarization ratios and polarization ratios 

calculated using the Mie solution to Maxwell’s equations.  The opportunities and limitations of 

using the polarization ratio are explored, and a genetic algorithm is developed to retrieve single 

mode and trimodal lognormal size distributions from multiwavelength, angular scattering data.  

The algorithm is designed to evaluate particles in the diameter size range of 2 nm to 60 µm, and 

uses 1,000 linear spaced diameters within this range to compute the modeled polarization ratio.  

The algorithm returns geometric mean radii and geometric standard deviations within 2% of the 

correct value when inverting a single lognormal probability size distribution from simulated 
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polarization ratios that include random Gaussian noise added to limit the signal-to-noise ratio to 

25.  The genetic algorithm performed reasonably well when retrieving results using a single 

complex refractive index for all three wavelengths while finding the lognormal particle size 

parameters.  Three inversion runs of the algorithm on simulated noisy data showed that the 

algorithm could retrieved a trimodal size distribution and a single complex refractive index that 

produced a very good fit between the simulated noisy polarization ratios and the forward-

calculated polarization ratios. 

A significant contribution of the present work is a set of tests conducted at the 

Environmental Protection Agency’s (EPA) Aerosol Test Facility (ATF), which is a controlled 

environment, where direct measurements of the size distribution and concentration of the 

scattering volume are available.  The aerosol size distribution results obtained from inversion of 

the measured scattering phase functions, a lognormal size distribution with a geometric mean 

diameter of ~450 nm and a geometric standard deviation of ~1.3, compare favorably with 

measurements from an aerodynamic particle sizer and a condensation particle counter.  This is 

one of the first large scale experiments where a comparison between multistatic inversion results 

and known properties of the interrogated volume of aerosols are made under controlled 

conditions. 

The eventual goal is to develop a prototype sensor and an analysis approach to provide an 

important and useful tool to better define the atmospheric aerosol properties.
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Chapter 1 
 

Introduction 

A considerable effort has been focused over the past decades on understanding the 

complex dynamics driving the physical and chemical processes of the Earth’s atmosphere.  The 

importance of these processes has been highlighted by the Montreal Protocol in 1978 and the 

creation of the Intergovernmental Panel on Climate Change (IPCC) in 1989.   Establishment of 

both of these entities resulted in large steps forward in recognizing the sensitivity of the Earth’s 

environment, and describing the issues to be addressed in protecting our planet from global 

climate changes.  It is the goal of the IPCC organization that we not only understand these vast 

and complex processes, but also begin to mitigate the harmful changes that humans have 

introduced into the natural cycles of our atmosphere.  Considerable progress in understanding the 

climate has been made over the past 20 years, particularly in respect to understanding the 

chemical processes involving greenhouse gases, such as carbon dioxide and methane.  There is 

still more work to be done; one topic in particular is in the area of understanding physical and 

chemical processes governing aerosols, and their effects upon climate and the radiation budget.  

Determining aerosol effects on the global radiation budget is a difficult and daunting task due to 

the extreme variability in the distribution of aerosols, which depend on physical and chemical 

environment factors that govern their formation; such as geographic location, season, proximity 

to urban developments, time of day, etc.  An article released by the National Ocean and 

Atmospheric Administration (NOAA) in 2000 states that, “…in order to assess the global impact 

of aerosols on climate, it is necessary to map their mean properties as functions of latitude, 

longitude, and altitude, as well as the variability of their properties with time.” (Levy, 2000)  The 

study of atmospheric aerosols has traditionally been dominated by direct measurement 



2 

 

techniques, usually performed by mounting point sensing instruments at locations on the surface, 

on aircraft or on balloons.  These approaches are not well-suited for continuous measurements of 

the spatial and temporal distributions of aerosols over an extended period of time, and such 

measurements are needed to truly understand atmospheric aerosol distributions. A system is 

needed that can make continuous measurements over long periods of time, and over a range of 

heights, in many different types of conditions.  Satellite instruments are beginning to provide a 

global picture of aerosol distributions; however these instruments are so far above the aerosols it 

is difficult to characterize them with any properties other than the horizontal distribution of 

backscatter and/or integrated extinction.  In order to obtain a global description, vertical profiles 

from ground based instrument networks capable of better characterization of aerosol properties 

and their vertical distribution must be obtained and analyzed together with satellite data in order 

to describe the spatial and temporal variations of the aerosol properties.  To collect a large 

database of information from around the world, the sensor system would also need to be 

relatively inexpensive, easy to use, and provide information in a standardized format.  Multistatic 

optical scattering is a promising aerosol remote sensing technique that can satisfy many of these 

requirements.  The Lidar Laboratory at Penn State University has been developing this technique 

for over 15 years, with three prior dissertations focusing on this topic (Stevens, 1996; Novitsky, 

2002; Park, 2008).  Each has concentrated on different aspects of this problem in order to bring 

this technique to a level where it can be utilized by the community at large.   

The goal of the present work is to extend multistatic techniques to simultaneous 

multiwavelength measurements; thus increasing the information available for the inversion 

analysis process.  The development of these new techniques has led to another area of focus for 

this work; namely, the creation of an advanced multi-variable inversion routine.  The inversion 

routine showcased in this work uses measured data to provide information about the aerosol size, 

size distribution, concentration, and composition (in the form of refractive index information), 
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while requiring minimal a priori information and human interaction.  The successful completion 

of these tasks will do much to further our ultimate goal of developing a standardized aerosol 

characterization instrument.     

1.1 Significance of Research 

Aerosols have considerable effects on the climate through direct and indirect radiative 

forcing, as shown by Fig. 1-1.  Direct radiative forcing is caused by absorption and scattering of 

sunlight.  The scattering of sunlight decreases the amount of energy that reaches the Earth’s 

surface and has a cooling effect on the surface and the lower atmosphere.  The absorption of 

sunlight at the ground heats the Earth’s surface, and warms the atmosphere by convection and 

dynamic transport of the latent heat of water vapor. The Earth’s system is further warmed by the 

trapping of radiant energy by greenhouse gases.  The net radiative impact on climate can be either 

a net cooling or a net warming based on absorption and scattering processes caused by the 

aerosols.  For example, increased cloud condensation nuclei lead to high densities of aerosols and 

cause cloud water droplets to form as higher densities of smaller particles.  The higher densities 

can increase the relative fraction of sunlight reflected back into space by clouds (albedo effect) 

and increase the lifetime of clouds because the particle growth leading to precipitation is delayed,  

and results in a cooling of the atmosphere.  This effect on cloud formation is indirect radiative 

forcing.     
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Figure 1-1: Schematic diagram showing the various radiative mechanisms associated with cloud 
effects that have been identified as significant in relation to aerosols (modified from Haywood 
and Boucher, 2000). The small black dots represent aerosol particles; the larger open circles cloud 
droplets. Straight lines represent the incident and reflected solar radiation, and wavy lines 
represent terrestrial radiation. The filled white circles indicate cloud droplet number concentration 
(CDNC). The unperturbed cloud contains larger cloud drops as only natural aerosols are available 
as cloud condensation nuclei, while the perturbed cloud contains a greater number of smaller 
cloud drops as both natural and anthropogenic aerosols are available as cloud condensation nuclei 
(CCN). The vertical grey dashes represent rainfall, and LWC refers to the liquid water content. 
(Forster et al (IPCC), 2007, Fig. 2-10). 

 
It is known that aerosols have an impact on our climate, yet we are unable to confidently 

model this effect due to a lack of an in-depth understanding of the aerosols themselves (see 

Figure 1-2).  "Atmospheric Aerosol Properties and Climate Impacts," (Chin et al, 2009) a report 

released by the Climate Change Science Program in January 2009, reports that a significant 

portion of the uncertainty in climate forecasting is a result of insufficient knowledge of 

atmospheric aerosols and cloud-aerosol interactions.  The chemical composition and optical 

properties of aerosols vary with their sources and thus, affect the climate differently (e.g. the 

warming effect of anthropogenic aerosols versus the cooling effect of dust particles).  The aerosol 

lifetime also varies depending on the source and size, from just a few hours to more than a week, 

and results in extreme spatial and temporal variability on a global scale.  This extreme variability 

makes the description of ‘typical’ aerosols a difficult task, yet necessary for accurate climate 
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modeling and forecasting.  The ability to accurately characterize and monitor aerosols over the 

lifetime of the particles will do much to improve our knowledge of aerosol formation and 

movement, and allow better predictions of the consequences of their presence. 

Figure 1-2: Radiative forcing for the climate for the year 2005 relative to 1750 (top of 
atmosphere; global annual mean); adapted from (Forester et al (IPCC), 2007, Fig. 2-20). 

1.2 Previous Work 

1.2.1 Multistatic lidar systems  

 The particle characterization from angular scattering data and the possible benefit of 

using it to characterize atmospheric aerosols has been recognized since the 60’s (see Born and 

Wolf, 1964 and Reagan, 1982), but the bistatic and multistatic lidar development lagged behind 

that of monostatic lidar.  The bistatic system used by Reagan et al. (1982a) required altitude-
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azimuth mounts for both the transmitter and the detector to collect scattering angles from 100 

degrees to 160 degrees with 0.5 degree accuracy using a pulsed ruby laser at a wavelength of 

694.3 nanometers.  Size distributions and refractive index of atmospheric aerosols were inverted 

from the scattering measurements combined with multiwavelength extinction measurements 

obtained using a solar radiometer (Reagan, 1982b).  Two separate research groups in India, the 

Vikram Sarabhai Space Center (Parameswaran, 1984) and the Indian Institute of Tropical 

Meteorology (Devara, 1989), operated bistatic scanning lidars in the 80’s and 90’s. 

Parameswaran et al. used a CW argon laser with the wavelength of 514.5 nm to collect scattering 

measurements at angles between 90 degrees and 165 degrees, while Devara et al. performed 

measurements across the same angle range using a helium-neon laser at 632.8 nm.  Aerosol size 

distributions and refractive indices were inverted from the data using iterative techniques coupled 

with many assumptions.  In addition to the PSU Lidar Laboratory work that began in 1992, two 

groups have implemented a bistatic lidar design in recent years.  Barnes et al. (2003) have 

operated a bistatic lidar system using a CCD camera as the detector at the Mauna Loa 

Observatory to obtain aerosol-to-molecular scattering ratios.  The CLidar was able to accurately 

characterize aerosol layers near the ground occurring in the overlap region of traditional 

backscatter lidar systems.  Olofson et al. (2008a, 2008b) used a bistatic lidar system to investigate 

the properties of Nordic clouds by determining the Stoke’s parameters I, Q, and U, and 

calculating the degree of linear polarization.  The measured linear polarization values failed to 

match the theoretical Mie-calculated values; this difference was attributed to the presence of 

nonspherical ice particles and multiple-scattering processes.   

 Prior students at Penn State University have contributed significantly to multistatic lidar 

development.  A bistatic lidar system for aerosol characterization was successfully implemented 

by Stevens (1996a, 1996b) in the early 90’s.  The angular scattering intensities of two 

components of polarization (referenced with respect to the plane that contains the laser beam and 
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the imagers) were measured along a horizontal path of 140 meters through coastal aerosols using 

a single linear photo-diode array and a 532 nm Nd:YAG laser, as depicted in Fig. 1-3.   

 

Figure 1-3: Bistatic setup used by Stevens (1996).  

 

The use of the polarization ratio to minimize error and uncertainties across the field-of-view of 

the receiver was described by Stevens (1996a) along with many advantages of an imaging bistatic 

lidar including the simplicity of the photo-diode array detector, which does not require scanning 

in order to capture scattering intensities at multiple angles.  While the aerosols along the path of 

the laser were examined using the imaging bistatic lidar data at scattering angles 155 through 175, 

the LAMP lidar determined the atmospheric extinction using the monostatic backscatter geometry 

and standard Raman lidar techniques (inelastic scattering off of N2 and O2 in the air.)  Stevens 

was able to simultaneously determine aerosol size distributions using a bistatic measurement 

during several cases of radiation fog. The polarization ratio measured and analyzed using Mie 

scatter equations resulted in aerosol extinction measurements that closely matched (within 4%) 

the measured Raman lidar results (data inset in Fig. 1-4).  The measured extinction from the 

Raman lidar agreed with that which was calculated from the aerosol properties (size, distribution, 



8 

 

number) determined from the bistatic lidar measurements of the scattering phase function and the 

polarization ratio. 

 

 
Figure 1-4: (a) Comparison of measured polarization ratio (solid line) to modeled polarization 
ratio (line with circles) for radiation fog (b) tri-lognormal size distributions used to produce the 
theoretical polarization ratio shown in (a) (Stevens, 1996, Fig. 5-18). 

 
 Novitsky (2002; 2005) extended Stevens’ work to vertical profiles of atmospheric 

aerosols using a multistatic lidar system.  Three CCD cameras placed at radial distances from the 

transmitter were used to image a vertically pointed 532 nm laser, as shown in Fig. 1-5.  Much was 
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learned from this research effort about the retrieval of aerosol size distribution in the regions of 

strong gradients in altitude dependent layers.  The analysis of layers was made possible by 

simultaneous measurement at several scattering angles for each scattering volume because of the 

simultaneous measurement at three different angles using the multistatic approach (see Fig.1-6).  

This variation of aerosols properties as a function of height adds significant complexity to the 

inversion process as compared to a uniformly mixed volume of aerosols; more information is 

required for an accurate retrieval of the vertical profile of aerosol size distributions in the 

presence of strong gradients in aerosol layers.  However, this is exactly the data that is needed to 

study topics such as the growth and dissipation of clouds.   

 

 

Figure 1-5: Multistatic system used to measure vertical aerosol profiles (Novitsky and Philbrick, 
2005). 
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Figure 1-6:  Polarization ratios as a function of altitude and scattering angle (Novitsky, 2002, 
Fig.6-3b). 

 
Jin Park (2008) investigated the effects of multiple scattering on the polarization ratio.  

An aerosol chamber with an aerosol generator, as well as ambient atmospheric aerosols were 

studied during investigations of varying concentrations of uniformly mixed aerosols.  His 

research showed that single-scattering Mie equations can be applied to conditions of moderate 

multiple scattering when examining scattering angles close to the backward direction with a 

decent level of agreement (Fig. 1-7).   In a similar study, Park shows how the measured 

polarization ratio begins to deviate from the Mie-calculated model for a range of backscattering 

angles under increasing conditions of multiple scattering (Fig. 1-8).  A useful model for the 

multiple scattering case was proposed. 
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Figure 1-7: Scattering measurements from fog-oil (solid line) under conditions of moderate 
multiple scattering compared to a single-scatter Mie-calculated polarization ratio (dashed line) 
(concentration of 60,000 #/cm3 with median diameter of 117 nm) (Park, 2008, Fig. 6.11). 

 

 
Figure 1-8:  Effect of multiple scattering on polarization ratio as a function of extinction cross-
section (Park, 2008, Fig. 6-17). 
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1.2.2 Inverting atmospheric aerosol size distributions 

 Using scattered intensity data to infer a particle size distribution is an ill-posed problem 

that requires solving a Fredholm integral of the first kind.  The complex problem of solving 

Fredholm integrals of the first kind for data inversion has been studied for over 40 years.  The 

two first widely-recognized methods, the Phillips-Twomey method and Tikhonov regularization, 

were developed in the early 60’s and are based on constrained linear inversion (Phillips, 1962; 

Twomey, 1963; Tikhonov, 1963).  These techniques rely on introducing additional constraints 

into the linear equations in order to reduce ambiguity in the solution space and produce an 

optimal solution (King, 1982).  The two constraints introduced by both of the aforementioned 

algorithms are non-negativity and smoothness.  Requiring a positive solution for a measured 

particle size distribution is obvious and dictated by physical necessity; however, the constraint of 

requiring the “smoothest’ solution in a set of solutions is not as straight-forward, and is very 

much open to interpretation.  An extensive focus of the aerosol remote sensing community for the 

past 40 years has been on the selection and application of the proper constraints for the linear 

inversion method.  Just a small representation of the literature available on constrained linear 

inversion for the specific application of aerosol size distribution retrieval includes: Yamamoto 

and Tanaka (1969), King et al. (1978), Walters (1980), Dave (1971), Herman et al. (1971), Byrne 

(1978), Reagan et al. (1980), Bockmann (2001), Veselovskii et al. (2002),  Miecznik et al. 

(2005),  and Kolgotin and Muller (2008).  An in-depth review of all of these similar inversion 

methods is too extensive for our purposes, but the point has been made that much attention has 

been given to this subject over the years.  This type of inversion method is attractive for two main 

reasons: its speed of convergence; and, when it does converge to the global solution, it is 

mathematically the best solution. All of these methods suffer from similar drawbacks; 

dependence on initial guesses, high sensitivity to noise, the tendency to be trapped in local 
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extrema (resulting in an incorrect answer), and the requirement of finding the derivative of the 

optimized equation, which is not always easy to calculate and oftentimes must be done through 

numerical techniques. 

 Stevens (1996) and Novitsky (2002) both utilized a gradient-based optimization 

technique to invert their measured polarization ratios, and both experienced a high level of 

frustration with varying-degrees of success.  Stevens implemented a Newton-Rhaphson 

optimization routine to retrieve the geometric means and geometric standard deviations of his tri-

modal lognormal size distributions.  Stevens found that this method often did not converge to a 

global solution, and he eventually resorted to a brute-force guess-and-check method.  Many 

helpful ideas were gleaned from Stevens’ inversion work, particularly his approach to modeling 

molecular scattering which will be explained in Chapter 2.  Novitsky invested a considerable 

amount of time and energy in a non-linear least-squares (NLS) inversion routine to retrieve tri-

lognormal size distributions.  Novitsky found that the NLS routine was able to adequately fit 

simulated parallel and perpendicular scattering phase functions, provided that the initial ‘first-

guesses’ for the nine lognormal parameters were within an approximate range of the correct 

parameters (which were known in the case of simulated data).  When attempting to use the NLS 

routine to fit the polarization ratio, the program “failed” after a single iteration even for cases 

where the initial starting point closely resembled the lognormal parameterized solution.  The 

approach struggles to converge to an appropriate solution in many cases due to asymptotes in the 

denominator of the polarization ratio, i.e. the derivative of the polarization ratio heads to infinity 

at points along such a curve.  While the NLS routine did prove to be impressive in its curve-

fitting abilities, it was not able to invert the polarization ratio data obtained from the multistatic 

approach and Novitsky was forced to resort to manual intervention to arrive at the final inversion 

of the data.  Novitsky points out that another drawback of utilizing a gradient-based inversion 

routine is the difficulty of calculating analytical derivatives of the polarization ratio, specifically 
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in the case of a varying refractive index.  This work on the NLS routine presented by Novitsky 

had a considerable impact on the selection of an inversion routine for the multiwavelength-

multistatic scattering data; specifically, it was determined that a non-gradient-based inversion 

routine should be implemented.  The search for such an algorithm revealed the genetic algorithm 

as a promising alternative to the gradient-based approach.   

 The use of stochastic search techniques as inversion methods for retrieval of aerosol size 

distributions started receiving attention during the past decade.  These types of algorithms, such 

as Monte Carlo methods, simulated annealing, and genetic algorithms, have the advantage of 

exploring the global solution space without using any derivative information.  These techniques 

are not generally caught in local extrema of the solution space, and they are stable under 

conditions of random noise because they do not operate on the steepest descent principle.  The 

simplicity of the algorithms, to both understand and implement, make them popular across a 

wide-range of applications.  The main drawbacks of these types of optimization algorithms are: 

the amount of time that is takes to converge and the lack of mathematical justification for the 

actual global solution found.  The convergence time has become less of a concern as computer 

technology has grown rapidly with multi-core computers.  The stochastic search algorithms are 

highly parallel in nature and are easily extended to multi-core processing, greatly increasing the 

speed at which these algorithms converge.   

 Genetic algorithms (GA) are an attractive search technique over the purely random 

Monte Carlo techniques because they use information from previously tried solutions of the 

problem to search for a global solution.  GA’s produce solutions using a process of selection, 

reproduction, and mutation that is modeled on the theory of natural selection and survival of the 

fittest.  A limited amount of information on applying genetic algorithms to retrieve particle size 

distributions and refractive indices from measured scattering data is available in the literature, all 

showing promising results.  Ye et al. (1999) applied a genetic algorithm to multiple sets of 
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simulated angular scattering data to invert aerosol size distributions with a high level of success.  

No predefined probability density functions were used in the inversion process, but rather ‘bins’ 

of radii ranging between 1 μm and 40 μm are allowed to assume concentration values.  The result 

was found to strongly depend on the real part of the refractive index, and indicates that the real 

refractive index should be a parameter that can be extracted by the inversion routine (i.e. 

changing the refractive index will either increase or decrease the fit between the model and the 

measured polarization ratio).  Hodgeson (2001) also applied a genetic algorithm to simulated light 

scattering data in determining particle size distributions for a particle size ranges between 100 nm 

to 4 μm.  This paper focuses on the ability of the algorithm to extract unimodal, bimodal, and 

trimodal distributions of spheres with well-defined diameters from a discrete set of simulated 

angular scattering measurements.  It was found that the GA performed well in this extremely 

simplified optical scattering scenario.  Another interesting study of genetic algorithm 

performance on simulated data was conducted by Xu et al. (2004) using multispectral extinction.  

Simulated extinction data was used at 16 different wavelengths across the mid-wave and 

longwave infrared region of the electromagnetic spectrum to determine particle size distributions 

described by a probability density function.  A comparison of the results obtained by the genetic 

algorithm to those obtained by two different gradient-based techniques showed that the GA 

outperformed the other two algorithms in the presence of noise, and produced similar results in 

low-noise datasets (Xu, 2004).  Lienert, Porter, and Sharma (2003) apply a genetic algorithm to 

invert particle size distributions from polar nephelometer data at 532 nm using a predefined 

lognormal probability density function.  Comparison of inverted size distributions to 

measurements made by particle sizers showed good agreement for particle diameters on the order 

of the wavelength and larger, but inversion of the single wavelength data was unable to accurately 

place constraints on the smaller sizes of accumulation-mode particles.  A genetic algorithm 

combined with polar nephelometer measurements also has been used to determine aerosol 
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refractive indices from angular scattering data (Barkey et al, 2007).  Parallel- and perpendicular-

polarized scattering measurements at 670 nm were used to retrieve the real refractive index of 

polystyrene latex spheres and ammonium sulfate droplets, with the inverted results falling within 

the expected range.  

1.3 Hypotheses 

As previously mentioned, this work is really a continuing effort that heavily utilizes the 

work and contributions of prior students.   The main goals of this research are to extend the 

multistatic polarization ratio technique to multiple wavelengths and development of a robust 

inversion algorithm that can be used to infer particle size distributions, concentrations, and 

complex refractive indices as a function of wavelength from the collected data.  Three primary 

hypotheses are tested through this work: 

1) Adding multiple wavelength data to a multistatic lidar system aids in accurately 

determining the size distribution and number density of the aerosols.  Multiple wavelength data 

are expected to be particularly useful in situations where a wide range of aerosol sizes and/or non-

spherical aerosols are present.  Each wavelength scatters more effectively from particles 

corresponding to a specific range of sizes and shapes.  Multiwavelength-multistatic data should 

also be beneficial in regions where the aerosols are non-uniformly mixed by providing multiple 

simultaneous measurements at each spatial element over a range of angles. 

2) A multiwavelength-multistatic system provides the capability to determine the 

refractive index of aerosols as a function of wavelength.  The refractive index of aerosols is 

dependent on their chemical composition, so multiwavelength complex refractive indices will tell 

us information about what materials are most likely present in the interrogated aerosols.   
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3)  A genetic algorithm accurately and robustly inverts the multiwavelength-multistatic 

data to determine aerosol characteristics.  An effort will be made to explore the robustness of the 

inversion technique and to describe some of the errors associated with its use on the 

multiwavelength-multistatic data.      

A shared conclusion by both Stevens and Novitsky was the need for a controlled 

experiment where the microphysical properties of the scattering medium were known in order to 

validate the results obtained by applying the Mie calculations to perform the analysis.  A 

significant contribution of the present work is a controlled experiment conducted at the 

Environmental Protection Agency’s (EPA) Aerosol Test Facility (ATF) where in situ aerosol size 

and concentration information is available to compare with the results from the optical scattering 

measurements.   

 

 

 

 

 



 

 

Chapter 2 
 

Scattering Theory 

 The key to an accurate inversion is an accurate description of the forward problem.  The 

intensity distribution of a beam of light scattered from a collection of particles is dependent on the 

microphysical properties of the particles, including the size, concentration, shape, and 

composition.  The large number of variables makes the remote sensing of aerosols by scattered 

light impossible without the use of some careful observations and intelligent constraints to narrow 

the allowable solutions to physically possible and reasonable ranges.  One constraint that 

significantly simplifies the description of an ensemble of scatterers is limiting their allowable 

shape to be spherical.  While not all atmospheric aerosols can be viewed as spheres (dust and ice 

definitely can not be), it has been found that Mie calculations, which are based on spherical 

scatterers, can describe optical scattering from fogs, clouds, and even dust, rather well.  Gustav 

Mie solved Maxwell’s equations using the necessary boundary conditions for the interaction 

between a homogenous dielectric sphere and an electromagnetic plane wave (Mie, 1908).  The 

so-called Mie equations are well-known within the electromagnetic community, and describe 

fully the interaction of the electromagnetic fields, both internal and external to the dielectric 

sphere, as incident radiation is scattered.  The complete derivation is rather intensive and is 

available in many excellent texts devoted to optical scattering (van de Hulst, 1957; Kerker, 1969; 

Bohren and Huffman, 1983).  There are a number of conditions that must be satisfied in order for 

these equations to accurately describe a volume of scatterers, with the most significant condition 

being that the process must be dominated by single, independent scattering events.  In other 

words, the scattered light must only strike a single particle and then be scattered into the field of 

view of the receiver with out interacting with any other particle (or the radiation from another 
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particle, meaning the process must be incoherent).  The relationship between scattered and 

incident electromagnetic fields from a sphere can be expressed as (Bohren and Huffman, 1989, 

pg. 65), 
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where the 2 x 2 matrix S can be calculated using Mie’s solution to the Maxwell equations.    The 

Si elements of the matrix are the complex amplitude scattering coefficients that can be used to 

calculate the magnitude of a scattered electromagnetic wave. The intensity of an electromagnetic 

wave is proportional to the square of the magnitude, and is the characteristic of the scattered field 

that will be measured and analyzed in this work.  A matrix equation similar to Eqn. 2-1 can be 

used to represent the intensity of polarized light scattered from a sphere using Stoke’s vectors and 

a Mueller matrix, 

   
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

i

i

i

i

s

s

s

s

V
U
Q
I

SS
SS

SS
SS

Rk
V
U
Q
I

4434

3433

2221

1211

22

00
00

00
00

1
.  (2-2) 

A Mueller matrix is a transfer matrix that can be used to describe the manipulation of incoherent 

light.  The Sii elements of the Mueller matrix describe the polarization properties of scattered 

light and are related to the amplitude scattering coefficients as (Bohren and Huffman, 1989, pg. 

112), 
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 The Stoke’s parameters I, Q, U, and V describe fully the scattered light polarization.  I is the total 

irradiance of the electromagnetic wave, Q is the polarized component of irradiance in the 

horizontal (+) and vertical (-) directions, U is the irradiance 45° from vertical in the clockwise (+) 

or counterclockwise (-) directions, and V is the irradiance in a circularly polarized state, either 

left-handed (-) or right-handed (+).  The sign of the component is defined by the direction 

observed when looking back at the source of the electromagnetic wave.   Under the conditions of 

a fully polarized electromagnetic wave, the Stoke’s parameters follow the relationship, 

     2222 VUQI ++= .    (2-4) 

Stoke’s vectors are generally normalized by the total irradiance I, which transforms the previous 

equation to the form of a unit sphere, and provides an elegant representation of the polarization 

state of an electromagnetic wave.  For example: 
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The normalized Stoke’s vectors and the Mueller matrix can be used to develop equations for the 

scattered intensity per incident unit intensity for parallel and perpendicular polarized (with respect 

to the scattering plane) light as (Bohren and Huffman, 1989, pg. 113), 

 ( ) ||,121122||,
1

is ISS
Rk

I +=        and  ( ) ⊥⊥ −= ,121122,
1

is ISS
Rk

I .  (2-6) 

Expressions for the parallel and perpendicular scattering intensities per unit intensity can be 

written by normalizing Eqn. 2-6 by the incident intensities and omitting the propagation scaling 

factor 1/k2r2,  

 ( ) 2
21211|| SSSi =+=          and  ( ) 2

11211 SSSi =−=⊥    (2-7) 
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These unitless equations form the basis of the scattering equations used to calculate the 

polarization ratio (explained in the next section).  At first glance the equations look deceptively 

simple, but the amplitude scattering coefficients are actually dependent on the wavelength of 

incident light (λ), the complex refractive index of the particle (nre+inim) which is also wavelength 

dependent, the radius of the particle (a), and the scattering angle (θ), i.e. 

( )θλλλ ,),()(,2,1 ainnS imre + .   A vectorized MATLAB version of the popular BHMIE code 

provided in the Bohren and Huffman appendix (1989) is used to compute the amplitude scattering 

matrix coefficients, S1 and S2 for all calculations presented in this work and in the inversion 

algorithm explained in Chapter 4.   

 Figure 2-1 shows the intensity distributions of the scattering phase function for 

perpendicular polarized light, i1, and parallel polarized light, i2, as the parameter ka increases.  

The quantity ka relates the incident propagation number (k = 2π/λ) to the radius of the aerosol, a.   

 
Figure 2-1: Scattering of polarized light as a function of angle and particle radius. i1 is 
perpendicular polarized light and i2 is parallel polarized light.  (Born and Wolf, 1980) 
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 When the particle is much smaller than the wavelength (a < 0.1λ), the particle scatters as 

a dipole and it is referred to as Rayleigh scattering.  In this case, the presence of small particles is 

difficult to distinguish from background molecules.  When the particle size and the wavelength 

are on the same order, distinctive scattering patterns are formed, which are represented by 

calculations using the Mie solutions of Maxwell’s equations.  As the size parameter (ka) of the 

particle increases, the angular scattering pattern changes from the simple dipole pattern to a 

highly-structured pattern with multiple peaks and nulls.  When the particle is much larger than the 

wavelength of incident light (a > 10λ), the scattering structure becomes highly complex, and 

defining features of the scattering pattern become difficult to discern.  The focus of this work uses 

these lobed structures, and knowledge of the wavelength and polarization of the incident 

wavelength, to retrieve the size and refractive index information about the scattering particles.     

The examination of multiple wavelengths in this study is intended to show that use of a range of 

wavelengths, specifically a broad range that covers regions of the UV, VIS, and IR spectra, can 

extend the applicability of the technique for multistatic aerosol characterization technique to 

include essentially all sizes of atmospheric aerosols.  Three wavelengths that span the visible 

spectrum are used in this work; 407 nm (blue/violet), 532 nm (green), and 650 nm (red).  These 

wavelengths were selected based on price and to provide the widest wavelength spread that could 

be analyzed using the optics and CCD imagers that were available for these multistatic 

measurements.   
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2.1 Optical Scattering and Atmospheric Aerosols 

2.1.1 Molecular scattering  

Molecular optical scattering is a well-known phenomenon and is responsible for the 

appearance of a blue sky.  Molecules are much smaller than aerosols, but still contribute to 

atmospheric scattering because of their abundance (on the order of 1019 molecules/cm3).  In order 

to calculate the contribution of molecules to the polarization ratio, an equivalent spherical radius 

is computed as explained by Stevens (1996, pg. 68) and Novitsky (2002, pg. 83).  The equivalent 

radii, aeq, are dependent on the Rayleigh cross-section, σ, and the real part of the index of 

refraction, n, and are computed for each wavelength as, 
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The Rayleigh cross section for standard air can be calculated using the empirical formula, 
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where the coefficients A through D are given in Table 2-1 (Bucholtz, 1995).   

Table 2-1: Coefficients for empirical Rayleigh scattering cross section in air (Bucholtz, 1995)  

Wavelength range A B C D 
0.2 µm≤  λ < 0.5 µm 3.01577 x 10-28 3.55212 1.35579 0.11563 
0.5 µm≤  λ < 4.0 µm 4.01061 x 10-28 3.99668 0.00110298 0.0271393

 

Using Eqn. 2-9, the Rayleigh scattering cross sections are 3.297 x 10-26 cm2 at 407 nm, 5.126 x 

10-27 cm2 at 532 nm, and 2.285 x 10-27 cm2 at 650 nm, which are the three wavelengths used for 

the experimental measurements analyzed in this work.  These wavelength-dependent cross-

sections are used in Eqn. 2-8 to calculate an equivalent size dielectric sphere.  The Mie equations 
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are used to calculate the scattering intensity from these equivalent dielectric spheres to 

approximate the intensity of optical scattering from nitrogen and oxygen in the atmosphere.  

Figure 2-2 shows the equivalent sphere radius as a function of incident wavelength and the real 

refractive index of the dielectric sphere. 

 
Figure 2-2: Equivalent dielectric sphere radius as a function of incident wavelength and real 
refractive index. 

 
  Novitsky (2002) points out that even though the real part of the index of refraction is 

included in the equivalent radius calculation, and the refractive index is allowed to vary in the 

inversion algorithm, this results in no change to the amplitude scattering coefficients because the 

resulting radii are so small compared to the incident wavelength (2002, pg. 83-84).  This point is 

confirmed by Fig. 2-3, which shows the polarization ratio for 407 nm incident light scattering 

from dielectric spheres of six different radii and real refractive indices (values from 407 nm curve 

shown in Fig. 2-2), yet it appears as a single curve. 
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Figure 2-3: Polarization ratio for 407 nm wavelength as a function of varying equivalent sphere 
radius and real refractive index. 

 

2.1.2 Particle size distributions  

Aerosols in the atmosphere are present in many sizes, ranging in diameter from single 

nanometers to hundreds of microns (Seinfeld and Pandis, 1998).  Many different probability 

density functions have been used to describe aerosols over the past 50 years.  A lognormal 

distribution is often used to describe aerosols that originate from a single source and is expressed 

as,  
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where NT is the total number concentration, dg is the geometric mean diameter, and σg is the 

geometric standard deviation.  Figure 2-4 shows four lognormal size distributions, each with a 

constant geometric mean diameter of 1 µm, a constant concentration of 1,000 particles/cm3, and 

four different values of the geometric standard deviation: 1.01, 1.5, 2.0, and 3.0.  A thorough 

description of the lognormal particle distribution is given by Novitsky (2002, Chapter 2). 

 
Figure 2-4: Lognormal size distributions for a diameter of 1 µm, a concentration of 1,000 
particles/cm3, and four different values of the geometric standard deviation: 1.01 (black line), 1.5 
(blue line), 2.0 (red line), and 3.0 (green line).  The left plot shows a linear scale for the particle 
diameter, while the right plot is a logarithmic scale. 

 
The trimodal lognormal distribution has found the most success in describing the total 

concentration of atmospheric aerosols, modeling the fine mode (dp < 0 .1 μm), accumulation 

mode (0.1 μm <  dp < 1 μm), and course mode (dp > 1 μm) of aerosols with a separate lognormal 

distribution (Seinfeld and Pandis, 1998).  The use of three lognormal distributions to describe 

atmospheric aerosols grew out of data published observations on Los Angeles smog (Whitby, 

1972).  The measured particle sizes did not fit the power law that had previously been used to 

describe aerosol size distributions and Whitby theorized that the size distributions should be 

broken up into subranges.  Kelkar and Joshi (1977) fit three lognormal size distributions to the 

smog data using the justification that the aerosols were produced through three mechanisms: gas-
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particle conversion (fine mode), condensation (accumulation mode), and disruption of bulk 

material and resuspension of settled particles (course mode).  The trimodal lognormal size 

distribution is expressed as the sum of three lognormal distributions: 
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The total aerosol concentration is then calculated by adding the concentration of each mode, NT,i.  

Jaenicke (1993) presents a description of ‘typical’ trimodal lognormal particle size distributions 

for different global regions, which was reproduced by Seinfeld and Pandis (1998), and displayed 

in Table 2-2.  The trimodal lognormal particle size distributions for urban, rural, and remote 

continental regions are shown in Fig. 2-5.  These models are useful for making general 

comparisons between the ‘typical’ aerosol size distributions based on geographic location.  In 

general, an urban environment will have a higher concentration of smaller particles and a rural 

environment will show two distinct lognormal modes.  It is important to remember that aerosols 

exhibit extreme variability over time and location, and applying one model of the ‘typical’ 

aerosol size distribution to locations anywhere around the world, at all times of the day, seasons, 

etc., based on geographic location is not possible.   For this reason, it should be expected that 

measured size distributions will differ significantly from the models presented in Table 2-2 most 

of the time. 
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Table 2-2: Values for atmospheric tri-modal lognormal distributions. (Jaenicke, 1993) 

 
Mode 1 

 
Mode 2 

 
Mode 3 

 
N 

(#/cm3) 
dp  

(µm) σg 
N 

(#/cm3) 
dp  

(µm) σg 
N 

(#/cm3) 
dp  

(µm) σg 

Urban 9.93 
 x 104 0.013 1.758 1.11 

x103 0.014 4.634 3.64  
x 104 0.05 2.173

Marine 133 0.008 4.539 66.6 0.266 1.622 3.1 0.58 2.489
Rural 6650 0.015 1.679 147 0.054 3.606 1990 0.084 1.845

Remote 
Continental 3200 0.02 1.449 2900 0.116 1.648 0.3 1.8 2.399

Free 
Troposphere 129 0.007 4.416 59.7 0.25 1.791 63.5 0.52 2.661

Polar 21.7 0.138 1.758 0.186 0.75 1.995 3 x 10-4 8.6 1.954
Desert 726 0.002 1.766 114 0.038 5.888 0.178 21.6 2.742

 
 

 
Figure 2-5: Trimodal aerosol size distributions from Table 2-2. (Jaenicke, 1993) 

2.2 Polarization Ratio 

 For the case of independent, single-scattering, the angular intensity distribution of 

scattered light is a summation of the scattered light from each particle in the scattering volume.  A 
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Fredholm integral equation of the first-kind relates the total scattered intensity to the particle size 

distribution, f(a), 

  ( ) ( ) ( )daafaikniNaiknI
a

aT ∫ +=+ ⊥⊥
max

min

,,,,,, ||,||, θλθλ ,  (2-12) 

where NT is the total number concentration of particles and ( )θλ ,,,||, aikni +⊥  are the unit 

scattering intensities per incident intensity equations (Eqn. 2-7).  The polarization ratio, which is 

the parameter used to determine the aerosol characterization, is formed by dividing the total 

scattering intensity from incident parallel polarized light by the total scattering intensity from 

perpendicular polarized light.  The advantages of using the polarization ratio are highlighted in 

the next few paragraphs.   A mathematical expression for the polarization ratio can be written by 

combining Eqns. 2-7 and 2-11 (Novitsky, 2002, pg. 82), 
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where 

 ( )θλ,||,sI is the total scattered intensity from parallel incident polarization, 

( )θλ,,⊥sI is the total scattered intensity from incident perpendicular polarization, 

( ) 2
2,1 ,,, θλ aiknS + are the amplitude scattering coefficients calculated using the Mie 

solution of Maxwell’s equations, 

f(a) is the particle size(radius) number distribution (N(ai) vs. ai), and 

⊥||,molecular are the intensities contributed by molecular scattering.   

The number-density particle size distribution, N(ai), is calculated by multiplying the normalized 

lognormal distribution, dN/dlog(ai) (Eqns. 2-10 and 2-11), by the logarithm of the bin width for 

each radii, dlog(ai), 
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 Examining the properties of the polarization ratio reveals why it is used in the inversion 

process rather than the intensity of the parallel or perpendicular phase functions.  The power of 

the received signal by the multistatic system can be calculated as, 

    ( ) ( ) θθβθ dT
D
CPP tr

2= ,    (2-15) 

where C is the optical efficiency of the system, D is the linear distance from the detector to the 

imaged aerosol volume, β is the scattering coefficient, and T2 is the two-way atmospheric 

transmittance (Meki, 1996).   In the case of a stationary receiver imaging a scattered beam (which 

is the case of the multiwavelength-multistatic system used in this work), the linear distance to the 

scattering volume (D) and the two-way transmittance (T2) will vary with the scattering angle θ, 

making range correction of the data rather involved. When the system design is such that only the 

scattering coefficients contain polarization dependence, then the equation for describing the 

polarization ratio reduces to, 
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The system parameters (such as the spectral response of the transmitter optics and the detector 

and nonlinearities across the field-of-view of the detector) and the path extinction between the 

scattering volume and the imager are all cancelled by forming a ratio of the two intensities; thus 

significantly simplifying the data analysis procedure as well as eliminating many measurement 

uncertainties. 
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2.2.1 Understanding the polarization ratio 

Before designing an inversion algorithm based on the polarization ratio, it is necessary to 

understand how the function changes as the different descriptors of the scattering particles vary. 

In other words, it is important to understand how the polarization ratio changes as a function of 

the particle size to wavelength ratio, the size distribution, and the complex refractive indices of 

the particles.  Novitsky (2002, pgs. 87-97) performed such a study prior to attempting a non-

linear least-squares (NLS) inversion on collected polarization ratio data.  Calculations for the 

single wavelength of 532 nm are performed, using the trimodal size distribution shown in 

Fig. 2-6, and using a real refractive index of 1.38.   Novitsky  presents plots, shown in Fig. 2-7, 

that show the variations in the polarization ratio as each of the nine lognormal parameters of the 

trimodal size distribution are varied. 

 
Figure 2-6: Trimodal particle size distribution used in polarization ratio sensitivity analysis in Fig. 
2-7. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-7:  Evolution of polarization ratios at 532 nm as each of the nine parameters in the 
trimodal lognormal size distribution is varied. (Novitsky, 2002, Fig. 3-17). 
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Some important observations can be made from these plots that help shape the design of the 

inversion algorithm used in this work. These plots show that the 532 nm polarization ratio 

appears to be the quite sensitive to changes in the geometric mean radius of the accumulation 

mode, rg,2, and the number density of the course mode, NT,3.  This dependence should be 

expected, when the physics of optical scattering from particles with diameters on the same order 

of size as the wavelength is considered; however, what is surprising is the apparent lack of 

sensitivity to the geometric mean radius of the course mode, rg,3, and the number density of the 

accumulation mode, NT,2.  Additional simulations are performed to better understand the behavior 

of the polarization ratio in response to changing particle concentrations of each lognormal mode. 

The concentrations used to scale the lognormal size distributions are only significant in 

their relation to the concentration of the modeled molecular scatterers, 2.54 x 1019 particles/cm3 at 

STP.  Analysis of Eqn. 2-13 reveals that the particle concentration, NT, would cancel out of the 

mathematical equation for the polarization ratio if not for the addition of the molecular scattering 

intensity which is also within the integral.  Because we know the molecular density (from 

pressure and temperature) and the Rayleigh scatter cross-section, we can calculate the range of 

particle concentrations that will produce discernable changes from the pure dipole contribution to 

the polarization ratio.  The polarization ratio will only vary in a range of concentration values 

where the molecular scattering intensity is a sizable fraction of the total scattering intensity, but 

not dominating it.  A set of four single lognormal size distributions, whose parameters are 

summarized in Table 2-3 and are plotted in Fig. 2-8, are used to explore the sensitivity of the 

modeled polarization ratio to particle number density.  The simulations are performed using a 

complex refractive index of 1.38 + i0.   
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Table 2-3: Lognormal distributions used to investigate the effect of particle number density on the 
polarization ratio for a scattering wavelength of 407 nm. 

 

Geometric 
mean radius, 

rg 
(μm) 

Geometric 
standard 

deviation, σg 

Concentration 
shown in 
Fig. 2-7 
(#/cm3) 

Simulated 
concentration 

range 
(#/cm3) 

Unique 
concentration 

range 
(#/cm3) 

Lognormal 
#1 0.01 1.10 105 10-4 to 1010 - 

Lognormal 
#2 0.10 1.10 103 1 to 106 102 to 105 

Lognormal 
#3 1.0 1.10 10 10-3 to 105 10-1 to 103 

Lognormal 
#4 10 1.10 10-2 10-5 to 10 10-4 to 10 

 

 
Figure 2-8: Lognormal size distributions used to explore the sensitivity of the model polarization 
ratio to particle number density.   The parameters for each curve are summarized in Table 2-3. 

 
The retrievable concentration range of the fine mode was examined first using a 

lognormal distribution with a mean particle diameter of 0.01 µm and σg = 1.1.  The total 

concentration of the distribution, NT, was varied from 10-4 particles/cm3 to 1010 particles/cm3 and 

combined with the scattering from the STP molecular density at the surface. The resulting 

Lognormal #1 

Lognormal #2 

Lognormal #3 

Lognormal #4 



35 

 

polarization ratio for a wavelength of 407 nm is shown in Fig. 2-9.  Eight different polarization 

ratio curves are plotted in Fig. 2-9, corresponding to eight different fine-mode concentrations 

(plus the molecular density), but only one distinct curve can be seen.  This is due to the fact that 

scattering from particles in this size range are dominated by the molecular scattering at 407 nm 

for all realistic atmospheric particle concentrations.  This indicates that to retrieve accurate 

concentration information on particles less than several tens of nanometers, it is necessary to use 

a shorter wavelength than 407 nm.  Fig. 2-10 shows the polarization ratio at 407 nm for a 

lognormal size distribution with a geometric mean radius of 0.1 μm and σg = 1.1.  This figure 

shows that polarization ratios for particle concentrations less than 100 particles/cm3 and greater 

than 100,000 particles/cm3 are not unique, and thus accurately retrieving these concentrations is 

not possible.  Likewise, examination of Figs. 2-11 and 2-12 show that the retrievable 

concentration range for a lognormal particle distribution with a mean radius of 1 µm and 10 µm is 

roughly 0.1 to 1000 particles/cm3 and 0.001 to 10 particles/cm3 respectively, when using the 

polarization ratio at 407 nm (532 nm and 650 nm produce similar concentration sensitivity 

results).  The ranges are summarized in Table 2-3, and provide some insight into the range of 

accurate concentrations that can be obtained through the inversion process.  The ranges obtained 

from these simulations pertain to four narrow lognormal size distributions and the obtained 

results should not be considered concrete ranges for all possible size distributions.  The size range 

sensitive for concentration measurements can be changed or extended to both smaller and larger 

sizes by using wavelengths in the ultraviolet and infrared.  The atmospheric window wavelengths 

between 300 nm and 30 μm will extend the ranges of particle sizes and the particle densities that 

can be measured.  This study helps in visualizing the errors to be assigned to the results. 
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Figure 2-9: Polarization ratio for 407 nm as a function of total particle concentration, NT (#/cm3), 
for a lognormal particle size distribution #1, with rg = 0.01 μm and σg = 1.1. 

 
Figure 2-10: Polarization ratio for 407 nm as a function of total particle concentration, NT (#/cm3), 
for a lognormal particle size distribution #2, with rg = 0.1 μm and σg = 1.1. 
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Figure 2-11: Polarization ratio for 407 nm as a function of total particle concentration, NT (#/cm3), 
for a lognormal particle size distribution #3, with rg = 1.0 μm and σg = 1.1. 

 

 
Figure 2-12: Polarization ratio for 407 nm as a function of total particle concentration, NT (#/cm3), 
for a lognormal particle size distribution #4, with rg = 10 μm and σg = 1.1. 

 

 One goal of the present work is to determine complex refractive indices of aerosols as a 

function of wavelength from the polarization ratio.  The feasibility of extracting the complex 

refractive information from the polarization ratio is first studied through simulation.  Novitsky 
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performed simulations at a single wavelength to study the effect of the refractive index on the 

polarization ratio (Novitsky, 2002, pg. 95).  The polarization ratio for the tri-modal lognormal 

size distribution shown in Fig. 2-13 was calculated at a wavelength of 532 nm using a real 

refractive index range from 1.33 to 1.8 in steps of 0.002 (the imaginary part of the refractive 

index was constant at zero).  Figure 2-14 shows that a small change in the refractive index of the 

scattering volume results in a noticeable change in the polarization ratio, which supports the 

hypothesis that the real refractive index can be retrieved from the scattering measurements. 

 
Figure 2-13: Trimodal lognormal distribution used to calculate polarization ratios in Fig. 2-14 and 
Fig. 2-15. 
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Figure 2-14: Polarization ratio at 532 nm as a function of real refractive index using the trimodal 
lognormal size distribution shown in Fig. 2-13 (Novitsky, 2002, Fig. 3-18). 

 
Novitsky also considered the effect of the imaginary part of the refractive index and 

concluded that it should not be included in the inversion process (2002, pg. 88).  Novitsky 

contended that the polarization ratio is indifferent to the imaginary part of the refractive index, 

which is true for a large range of index values.  Figure 2-15 shows the polarization ratios for the 

trimodal lognormal size distribution shown in Fig. 2-13, a wavelength of 532 nm, and a fixed real 

refractive index of 1.47, as the imaginary part of the refractive index varies logarithmically from 

10-10 to 1.  For the range of 10-10 to 10-4, the polarization ratios are unchanged, however; as nim 

continues to increase the polarization ratio curves start changing, particularly in the 

backscattering directions.  This is important to know, as some aerosols, such as carbon, do have 

high imaginary refractive indices.  The oleic acid and fog oil, which we used in the EPA aerosol 

chamber tests, also have nim values that fall within this range, and the polarization ratios are 

Polarization Ratio 
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altered by the imaginary part of the refractive index.  This knowledge of the polarization ratio 

behavior in response to changing nim values is used to restrict the inversion algorithm to 

imaginary refractive index values from 10-4 to 0.1.  If a value of 10-4 is retrieved by the algorithm, 

it is noted that the imaginary part of the refractive index is a value equal to or less than the 

retrieved index.   

 

Figure 2-15: Polarization ratio change for change in imaginary part of refractive index. Ratios are 
calculated using trimodal size distribution shown in Fig. 2-13, a wavelength of 532nm, and 
nre=1.47.



 

 

Chapter 3 
 

Inversion 

Retrieving aerosol characteristics from scattering measurements requires a method of 

mapping the measured data to the desired aerosol characteristics.  This ‘mapping’ method can 

then be used to ‘invert’ the data, i.e. use light scattering measurements to determine 

characteristics about the aerosols that scattered the light.  The ‘mapping’ is generally referred to 

as the forward model, and the retrieval of the aerosol characteristics from the measurements is 

called the inversion process.  While it is relatively straight forward to select the ‘best’ forward 

model for a given application, it is a bit more ambiguous to select the ‘best’ inversion algorithm.   

Dubovik and King (2000) explained it well: 

“…forward models differ mainly in the accuracy of describing a physical 
phenomenon and the speed of calculation.  Correspondingly, for practical 
applications, one always chooses the most accurate model provided it satisfies 
the time standards.  Choosing the best inversion method, on the other hand, is a 
more complicated task, in that the evaluation of inversion accuracy is an 
ambiguous question, especially for a case of the simultaneous retrieval of several 
variables. For example, replacing a scalar model of light scattering by a model 
accounting for polarization, results in doubtless improvement in the accuracy of 
describing any characteristic of scattered light. In contrast, retrieval errors are not 
so well correlated for different retrieved parameters. Due to a change of inversion 
methods the retrieval accuracy may improve for one parameter but degrade for 
another parameter. Correspondingly, the preference between inversion methods 
is always rather uncertain.” 

The inversion algorithm can only be as good as the accuracy of the measurements and the 

forward model.  Theoretically, the best possible inversion would retrieve a model that creates an 

error of zero between the modeled and measured data.  This can only be done if the forward 

model exactly matches the conditions of the measurements, and the errors and noise in the data 

are understood and quantified.  The best inversion algorithm that can practically be applied to 
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measured data, takes into account the accuracy, and noise of the measured data.   The ‘best’ 

inversion algorithm would then minimize the error to within the error bars of the measured data.   

Mie scatter analysis can be used to accurately describe the angular scattering intensity of 

collimated light from a volume of spherical particles provided that the scattering volume is 

optically thin, that is particles are widely spaced and single, independent scattering processes 

dominate.  Applying Mie scattering equations to spherical aerosols has been well studied and is 

known to the aerosol community as a feasible approach for describing many atmospheric 

aerosols, specifically fogs, clouds,  and other water-based aerosols.  For these reasons, and the 

general speed of the calculations, the Mie scattering equations are used to calculate the forward 

model.   The ensemble-averaged angular scattered intensity, I(θ), is expressed as a Fredholm 

integral of the first kind:  

    ( ) ( ) ( )∫= drrfmiNI ',,αθθ    (3-1) 

where N is the number of particles, f(r) is the particle size distribution function, r is the particle 

radius, α=2πr/λ is the size parameter, λ is the wavelength of the incident light, m’ is the complex 

refractive index of the particle relative to the surrounding media, and i(θ, α, m’) is the intensity of 

the scattered light of a single spherical particle.  Due to the oscillatory nature of the Mie 

scattering intensity i(θ, α,m’), the solution to Eqn. 3-1 lacks uniqueness, and is an ill-posed 

problem.  Many techniques have been used over the years to invert particle size distributions from 

scattering data, and these have been reviewed in Chapter 1.  Recently, stochastic search 

techniques have entered the scene as promising alternatives to the linear search methods (Ye, 

1999; Lignon, 1998).  A genetic algorithm was used by Ye, et al. (1999) to invert particle size 

distributions from simulated angular scattering data with promising results.  Genetic algorithms 

offer many advantages over traditional numerical optimization techniques including the ability to 

use both continuous and discrete parameters, search across a wide sampling of the solution space, 
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and handle a large number of variables.  Derivative information of the performance surface is not 

needed, which eliminates many of the difficulties associated with traditional gradient-based 

algorithms.  For these reasons, and the overall simplicity to both understand and implement, a 

genetic algorithm is selected as the inversion algorithm of choice for these investigations.     

3.1 Genetic Algorithm Terminology 

Genetic algorithms (GA) are modeled after the processes of evolution and genetic 

recombination so the building blocks of the algorithms are named after genetic elements.  Genes 

are the binary encoding of each problem variable, and all of the genes are referred to as a 

chromosome.  A set of chromosomes is called a population.  Each chromosome in a population 

has a fitness associated with it that is calculated through a fitness function.  The chromosomes in 

each population are ranked from best to worst based on their fitness. The higher ranked 

chromosomes are mated to produce a new population that exhibits characteristics of the better 

individuals from the previous generation.  Mutation is allowed to occur at a small probability.  

This process repeats until either a desired fitness has been achieved or a set number of 

generations have occurred.    A simple GA has the following steps: 

1. Generate an initial random population of chromosomes. 

2. Evaluate the fitness of each population member. 

3. Rank the individuals based on fitness. 

4. Generate offspring by mating good individuals. 

5. Mutate selected members of the offspring. 

6. Terminate if conditions have been met or continue back to step 2. 

The flow chart of a basic genetic algorithm just described is shown in Fig. 3-1. 
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Figure 3-1:  Example of a flow chart for simple genetic algorithm. 
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3.2 Simple GA Inversion using Polarization Ratio 

3.2.1 Binary coding 

Atmospheric aerosol size distributions are commonly modeled as lognormal distributions 

or a combination of lognormal distributions as described in Chapter 2.  Lognormal size 

distributions are fully characterized using three parameters, the total particle concentration (NT), 

the geometric mean particle radius (rg), and the geometric standard deviation (σg).   

In the genetic algorithm, the concentration, geometric mean and the geometric standard 

deviation of the lognormal distributions are represented as a binary string of zeros and ones.  The 

binary string is translated to a physical quantity using the generalized formula, 

    min''*' nnnn res +=      (3-2) 

where n’ is either the concentration, the geometric mean particle radius or the geometric standard 

deviation.  The value of n is the decimal equivalent of the binary string, n’res is the resolution of 

the variables, and n’min is the minimum decimal value that the variable is allowed to assume.  

Selecting the correct range and resolution for the size distribution variables is essential to the 

success of the inversion algorithm.  If the resolution is too course, the algorithm may never find 

an optimal answer and if the resolution is too fine the algorithm may take too long to search the 

solution space.  The radii used to calculate the theoretical polarization ratio is limited to the range 

of 1 nm to 30 µm (see Chapter 2), so the inversion algorithm should not search for a geometric 

mean radius outside this range.   
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3.2.2 Fitness 

The fitness function is the most important part of a genetic algorithm, as it is the part of 

the algorithm that forms the connection to the physical problem being optimized.  The success of 

the algorithm is dependent on how well the fitness function evaluates each solution in relation to 

the overall objectives of the optimization problem.  The measured polarization ratio, which will 

be used as the principle data for the aerosol characterization, is formed by dividing the received 

scattering intensity from parallel polarized incident light by the received scattering intensity from 

perpendicular polarized incident light.   

As discussed in Chapter 2, the theoretical polarization ratio used in the genetic algorithm 

as the measure of each size distributions’ fitness is calculated using the following equation, 
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where wi are the weights for each particle radius, ri, determined by the particle size distribution 

generated by the genetic algorithm, and S1 and S2 are the amplitude scattering coefficients 

described in Chapter 2.  The calculation of the total scattering intensity for parallel or 

perpendicular polarized incident light is shown below, and the point-by-point division of the two 

calculated intensities forms the model polarization ratio, PR(θ, λ).   
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The squared error between the measured polarization ratios and the polarization ratios calculated 

using Mie theory will be used as the measure of each generated size distributions’ fitness, F,  
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3.2.3 Selection, crossover, and mutation 

Stochastic universal sampling (Baker, 1987) and sigma scaling (Goldberg, 1991) were 

implemented in the algorithm. This fitness-proportionate selection method gives every individual 

a chance of being selected, while still ensuring that fitter candidates are more likely to be chosen 

than weaker individuals.  The individuals are mapped to a wheel, such that each individual's 

segment is proportional in size to its fitness.  A single random spin of the roulette wheel 

determines the first selected individual. The selection process then proceeds by advancing all the 

way around the wheel in equal sized steps, where the step size is determined by the number of 

individuals to be selected.  Selection pressure is the probability of the best individual being 

selected compared to the average probability of selection of all individuals. Sigma scaling 

attempts to moderate selection pressure over time so that it is not too strong in early generations 

and not too weak once the population has stabilized and fitness differences are smaller. The 

standard deviation of the population fitness is used to scale the fitness values so that the selection 

pressure is relatively constant over the lifetime of the evolutionary program.   

Uniform crossover was used to generate two new offspring from two selected individuals 

by exchanging a random number of bits.  Uniform crossover is accomplished through the use of a 

randomly generated mask that contains the same number of binary bits as the parent 
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chromosomes.  The numbers in the mask indicate whether the bit from parent one or parent two 

should be translated to each child.  For example, if the two chromosomes of the parents are ‘1 1 1 

1 1 1’ and ‘0 0 0 0 0 0’, and the uniform crossover mask is ‘0 0 0 1 0 1’ then the two offspring 

will be ‘1 1 1 0 1 0’ and ‘0 0 0 1 0 1’.  Mutation is a random flipping of a bit after crossover has 

occurred.  It is used to prevent premature convergence to a local minimum.   

3.2.4 The polarization ratio model 

 The run-time of the inversion algorithm is drastically reduced by using pre-calculated 

look-up tables of the unit scattering intensity kernels, ||i and ⊥i .  The look-up tables of unit 

scattering intensities, i, used within the model are functions of the polarization of the incident 

light, and the real and imaginary refractive index of the scattering particle.   The size of the table 

is dependent on the resolution and range of the particle radii and the resolution of the scattering 

angles.  A finer resolution of particle radii (i.e. more particle radii used in the calculation) will 

increase the accuracy of the polarization ratio calculation and a finer resolution of scattering 

angles will theoretically improve the fit between the measured and modeled polarization ratios by 

increasing the number of points to minimize the mean squared error between them.  Increasing 

the resolution of the particle radii and/or the scattering angle resolution improves the inversion, 

but at the expense of longer computation times.   

The range of radii to include in the model was determined by considering the residency 

time of particles in the atmosphere, and the limitations of differentiation for visible-wavelength 

optical scattering from small particles.  The upper radii limit of 30 µm (or 60 µm diameter) was 

selected based on arguments presented by Novitsky (2002, pg. 110) and include consideration of 

the settling time of large particles, and the time scale of the multistatic scattering measurements.  

Particles larger than 30 µm will fall out of the field of view of the multistatic detectors faster than 
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the data is typically collected.  The lower limit of the range was selected based on the condition 

for Rayleigh scattering, 05.02
<

⋅⋅
λ
π rm .  Using the shortest wavelength of 407 nm and the 

highest reasonable refractive index of 1.8, the radii of a particle must be less than 2 nm to be 

modeled as Rayleigh scattering.  Particles with radii below 2 nm will have essentially identical 

polarization ratios (that of a dipole scatterer) and it will be impossible to differentiate between 

particle sizes based on the polarization ratio.   

Simulations were performed to determine the radii and scattering angle resolution that is 

required within the model to produce accurate polarization ratios, while minimizing computation 

time.  Two different size distributions representative of those we expect during our measurements 

were examined, and these are summarized in Table 3-1.  The first size distribution is a single 

lognormal distribution of submicron particles, similar to the size distribution expected from the 

aerosols produced by a commercial fog generator.  The second distribution is a trimodal 

lognormal size distribution that was retrieved from coastal aerosol scattering measurements by 

Stevens (1996, pg. 124) using the multistatic technique at the single wavelength of 532 nm.  

Figure 3-2 shows the two size distributions used in the following calculations to determine the 

necessary number of particle sizes and scattering angles to include in the polarization ratio 

models. 

Table 3-1: Summary of aerosol size distributions selected for algorithm tests. 

nre + inim rg1 
(μm) 

σg1 NT1 
(#/cm3) 

rg2 
(μm) 

σg2 NT2 
(#/cm3) 

rg3 
(μm) 

σg3 NT3 
(#/cm3) 

1.33 + i0 0.30 1.75 1,000 - - - - - - 
1.38 + i0 0.0025 3.98 56,610 0.237 1.38 700 8.91 1.01 0.0101 
 

 The polarization ratios expected for wavelengths of 407 nm, 532 nm, and 650 nm for the 

first case of the single lognormal distribution are shown in Figs. 3-3 and 3-4, and show the 

dependence as a function of the number of particle sizes used in the calculations.  Figure 3-3 



 

 

50

shows the polarization ratios computed for a different number of samples that are logarithmically 

spaced radii, while Fig. 3-4 shows the polarization ratios computed for a different number of 

samples that are linearly-spaced radii.  Examination of Figs. 3-3 and 3-4 show that the 

polarization ratio calculation has basically converged when using 500 to 750 logarithmically-

spaced particles sizes or when using about 1,500 linearly-spaced particle sizes.     The 

logarithmically-spaced calculation converges quicker in this case of a single lognormal 

distribution of small particles, because the logarithmic scale concentrates the sampled particle 

radii at the smaller particle sizes where the distribution is centered.  The linearly-spaced radii are 

equally spread across the whole range from 1 nm to 30 μm, so it takes more linearly-spaced 

points to adequately sample this lognormal size distribution. 

 
Figure 3-2: Size distributions used to determine the number of particle sizes to include in the 
model polarization ratio calculations, see Table 3-1. 

Simulation 
equivalent to 
Stevens (1996) 
measurements 

Simulation for 
fog generator 
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Figure 3-3: Polarization ratios calculated for the first case of a single lognormal size distribution 
from Table 3-1 as a function of the number of logarithmically-spaced particle radii between 1nm 
and 30 µm used in the calculations. 
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Figure 3-4: Polarization ratios calculated for the first case of a single lognormal size distribution 
from Table 3-1 as a function of the number of linearly-spaced particle radii between 1nm and 30 
µm used in the calculations. 

 
Polarization ratios at 407 nm, 532 nm, and 650 nm are calculated for the second case of 

the trimodal lognormal size distribution in Fig. 3-2b using different resolutions of particle sizes to 

determine the necessary number of particle size to include in the polarization ratio inversion 

model.  The resulting polarization ratios are shown in Figs. 3-5 and 3-6. The fine structure of 
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peaks and troughs in the scattering angle range between 130 and 180 degrees changes 

significantly as the resolution varies.  This structure is caused by combining several highly 

structured phase functions created by the scattering from large particles of similar sizes.  This 

pattern converges when the course mode lognormal distribution is adequately sampled so that the 

rippled pattern stabilizes. It appears to stabilize for approximately 1,000 logarithmically-spaced 

or 750 linearly-spaced particle sizes.  Figures 2-3 though 2-6 show that the results from using 

1,000 logarithmically-spaced or 1,000 linearly-spaced particle sizes should be adequate to reach 

convergence in the model polarization ratio calculation of the single and trimodal lognormal size 

distributions.  The two cases examined should be representative of the aerosol size distributions 

that will be encountered during the multiwavelength-multistatic measurements.  The polarization 

ratios do not vary widely with changing concentration of smaller particles (see Figs. 2-7 and 2-8), 

but do change significantly with small changes in the concentration of large particles (see Fig. 2-

10).  This knowledge is used in combination with the previous four figures to select the resolution 

of particle sizes to use within the polarization ratio model.  The polarization ratio model is 

implemented using 1,000 linearly-spaced particle sizes in order to equally represent all particle 

sizes, and not concentrate the particle sizes used in the calculation in the smaller particle range 

where the polarization ratio does not change significantly with changing radius or concentration. 

The scattering angle resolution to use within the model is determined by examining the 

polarization ratio calculated for the trimodal lognormal size distribution using 1,000 linearly 

spaced particle sizes.  The polarization ratios are calculated at one degree, half degree, quarter 

degree, and eighth degree, intervals between the angles of 130 and 180 degrees and are displayed 

in Fig. 3-7.  Examination of Fig. 3-7 reveals that no extra information is added to the polarization 

ratio beyond a resolution of half-degree scattering angle steps.  Half-degree steps are selected to 

use within the model to minimize the number of calculation points and thus maximize the speed 

of the model calculation.  
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Figure 3-5: Polarization ratios calculated for the second case of the trimodal lognormal size 
distribution from Table 3-1 as a function of the number of logarithmically-spaced particle radii 
between 1nm and 30 µm used in the calculations. 
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Figure 3-6: Polarization ratios calculated for the second case of the trimodal lognormal size 
distribution from Table 3-1 as a function of the number of linearly-spaced particle radii between 
1nm and 30 µm used in the calculations. 
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Figure 3-7: Polarization ratios calculated for trimodal lognormal size distribution from Table 3-1 
as a function of scattering angle resolution using 1000 linearly-spaced particle radii. 

3.2.5 Single lognormal with fixed refractive index 

The design and testing of the algorithm progressed in steps.  The first task was to 

determine if the genetic algorithm could invert the concentration, geometric mean and geometric 

standard deviation of a lognormal particle size distribution from simulated polarization ratio data.  

A lognormal size distribution with a concentration of 1,000 particles/cm3, a mean radius of 0.75 

μm, and a geometric standard deviation of 1.5 was used in the model to test the algorithm. The 

resulting polarization ratios, calculated using 1000 linearly spaced radii from 1 nm to 30 μm, and 

a refractive index of 1.35 + i0, are shown in Fig. 3-8.  Figure 3-8a are the calculated polarization 
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ratios and 3-8b are the calculated ratios combined with additive white Gaussian noise to provide a 

signal to noise ratio (SNR) of 25.  The noisy polarization ratios are used as the ‘measured’ data to 

test the inversion algorithm.  This signal-to-noise was selected through visual inspection of the 

polarization ratios curves.  It was desired that the inversion algorithm be tested with a high level 

of noise, but still be able to pull out the original signal.   Increasing levels of noise were added to 

calculated polarization ratios curves until the average shape of the resulting ‘noisy’ polarization 

ratios started to deviate from the ‘clean’ signal.   

An 11 bit binary number is used within the genetic algorithm to represent the geometric 

mean radius with a minimum radius value of 0.01 microns and a resolution of 0.01 microns.  

Utilizing all 11 bits of the binary number allows the mean radius to assume a maximum radius 

value of 20.48 microns (see Eqn. 3-2).  The geometric standard deviation was represented by a 

nine bit binary number with a minimum value of 1.01, a resolution of 0.01, and a utilization of all 

nine bits allows a maximum value of 6.12. 

 
Figure 3-8: (a) Calculated polarization ratio data using a lognormal size distribution (rg = 0.75 

µm, σg = 1.5) and a concentration of 1,000 particles/cm3 (b) polarization ratio with additive white 
Gaussian noise to create a signal-to-noise ratio of 25. 
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The analysis was run multiple times to explore the uniqueness of the results produced by 

the algorithm.  The first set of runs produced the five lognormal size distributions summarized in 

Table 3-2.  The algorithm is consistently inverting the correct geometric mean radius and 

geometric mean standard deviation of the model size distribution to within 2% error for the mean 

radius and 1% error for the geometric standard deviation.  The concentration of the particles is 

not converging to the same value every time, and is frequently producing a value that is off by 

over 100% error.  This lack of convergence for the concentration is due to the previously 

explored (see Chapter 2) lack of sensitivity in the polarization ratio to varying concentration 

levels outside a certain range.  The polarization ratio for this lognormal size distribution, with a 

geometric mean radius of 0.75 μm and a geometric standard deviation of 1.5 is calculated for a 

large range of concentrations, shown in Fig. 3-9.  This figure helps explain why the algorithm can 

not differentiate between concentrations of 1,000 particles/cm3 or greater.   Calculations similar 

to this should be performed for all inversions involving a large concentration of small particles to 

add upper and lower bounds to the retrieved concentration range.  

Table 3-2: Retrieved size distribution for five different runs using the simulated noisy 
polarization ratio shown in Fig. 3-8b. 

Minimum  
Squared 

Error 

Concentration 
(#/cm3) 

NT 
 %  

error 

Geometric 
Mean Radius 

(µm) 

rg 
 % 

error 

Geometric 
Standard 
Deviation 

σg 
% error 

10.810 5,120 +412% 0.74 -1.3% 1.51 +0.67%
10.803 1,585 +58.5% 0.74 -1.3% 1.51 +0.67%
10.796 1,000 0% 0.76 +1.3% 1.49 -0.67% 
10.797 1,585 +58.5% 0.75 0% 1.50 0% 
10.805 2,512 +151% 0.74 -1.3% 1.51 +0.67%
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Figure 3-9: Calculated polarization ratio for lognormal size distribution (rg = 0.75 µm, σg = 1.5) 
shown in Fig. 3-8a as a function of particle concentration, NT. 

 
After experiencing difficulties with concentration convergence, a second algorithm was 

designed that did not include the concentration as a retrievable variable.  This version of the 

genetic algorithm uses a lognormal probability density function with a normalized area of 1.  The 

retrieved lognormal probability density function can then be scaled by the concentration in order 

to produce number density particle size distributions.  This two-variable version of the genetic 

algorithm searches for a geometric mean diameter and geometric standard deviation for a single 

lognormal probability density distribution that fits the measured polarization the best in the mean-

squared-error sense.  The same polarization ratios calculated from the lognormal size distribution 

with a mean radius of 0.75 µm and a standard deviation of 1.5 and a concentration of 1000 

particles/cm3 are used in the genetic algorithm for the scattering angles 130 to 175 degrees (Fig. 

3-8b).  The two-variable genetic algorithm is run five different times and the retrieved lognormal 

probability density functions are summarized in Table 3-3.   
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Table 3-3: Two-variable genetic algorithm results for minimum squared-error of lognormal size 
distribution with rg of 0.75 µm and σg of 1.5 at a concentration of 1,000 particles/cm3    

Geometric Mean 
Radius 
(µm) 

Percent Error for 
rg 

Geometric Standard 
Deviation 

Percent Error for 
σg 

0.75 0% 1.48 -1.3% 
0.73 -2.7% 1.50 0% 
0.73 -2.7% 1.50 0% 
0.72 -4.0% 1.53 +2.0% 
0.75 0% 1.48 -1.3% 

 

The inversion algorithm produces consistent geometric mean radius and geometric 

standard deviation results within 4% error, even under conditions of significant random noise.  

This two-variable genetic algorithm converged to lognormal probability density functions in 

approximately 60 seconds on a Pentium D processor.  This is considerable faster than the five 

minutes on-average that it took for the model to converge that included the concentration as a 

retrievable variable.  

The variation in retrieved lognormal size distribution parameters in Tables 3-2 and 3-3 is 

a good example of why it is important to run the genetic algorithm multiple times on any given 

set of data.  This variation occurs because the algorithm is sampling random points inside the 

entire solution space and then is concentrating in areas with the highest fitness as the algorithm 

continues to produce new populations.  The absolute best-solution may never be tried by the 

genetic algorithm, depending on the crossover and mutation process.  The important point is that 

all of the solutions retrieved by the genetic algorithm are in the same general area within the 

solution space, clustered around the global maximum. A second more exact method, such as a 

grid search, where every possible combination of variables is tried, can be used to find the 

solution that produces the lowest mean squared error within this much smaller solution space.   
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3.2.6 Single lognormal size distribution with varying refractive index 

The second step in the inversion testing process was to allow the complex refractive 

index to vary as function of wavelength.  Mie scattering intensity look-up tables are generated for 

real refractive indices from 1.3 to 1.8 by steps of 0.005, and the imaginary refractive index is 

allowed to assume eight different values: 0, 0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, and 0.0001.  

This requires 707 different look-up tables of unit scattering intensities, with each table containing 

the parallel and perpendicular unit scattering intensity for 1000 linearly spaced radii between 1nm 

and 30 µm at the three wavelengths of 407 nm, 532 nm, and 650 nm.  The entire directory of 

look-up tables requires five gigabytes of memory and takes an entire day to generate on a 4-core 

2 GHz processor.  The requirement of loading a different look-up table for every combination of 

inversion variables significantly reduces the speed of the genetic algorithm.  The extension of the 

genetic algorithm code to multi-core processing would be an extremely rewarding effort if this 

algorithm were to be used to process a large volume of scattering data.   

The single lognormal size distribution with a geometric mean radius of 0.75 µm and a 

geometric standard deviation of 1.5 is used to calculate polarization ratios using three different 

complex refractive indices for each wavelength.  The calculated polarization ratios are shown in 

Fig. 3-10 using a complex refractive index of 1.465 + i0.01 for 407 nm, 1.46 + i0.01 for 532 nm, 

and 1.455 + i0.01 for 650 nm.  White Gaussian noise is added to the calculated polarization ratios 

to produce curves with a signal-to-noise ratio of 25, as shown in Fig. 3-10b.  The range of 

scattering angles between 130 and 175 degrees are used as the input to the inversion algorithm.    
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Figure 3-10: (a) Calculated polarization ratios for single lognormal distribution with rg = 0.75 µm, 
σg = 1.5, NT = 1000 #/cm3and refractive index of 1.465 + i0.01 at 407 nm, 1.460 + i0.01 at 532 
nm, and 1.455 + i0.01 at 650 nm (b) same polarization ratios with additive white Gaussian noise 
used to produce a signal-to-noise ratio of 25. 

 
The genetic algorithm is then used to retrieve a single lognormal size distribution and a 

single complex refractive index for all three wavelengths from the simulated polarization ratio.  

On average, it took about 1 hour and 15 minutes for the algorithm to produce a size distribution 

and refractive index combination that resulted in a small squared-error between the simulated 

noisy polarization ratios and the model.  Results from five runs are summarized in Table 3-4 

below.  The polarization ratios calculated using the retrieved lognormal size distribution and 

complex refractive index from the first inversion run (first row of Table 3-4) are shown in Fig. 3-

11 along with the ‘noisy’ polarization ratios used as the data input to the algorithm.  The inverted 

polarization ratios (dashed lines in Fig. 3-11) match quite well to the average of the noisy 

polarization ratios.   
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Table 3-4: Summary of results for single lognormal distribution with one varying refractive index 
used for all three wavelengths.  

rg1 
(μm) 

Percent 
Error 
for rg 

σg1 

Percent 
Error for 

σg 

NT1  
(#/cm3) 

Percent 
Error 
for NT 

nre + inim 

0.77 +2.67% 1.48 -1.35% 1780 +78% 1.460 + i0.01 
0.77 +2.67% 1.48 -1.35% 1120 +12% 1.460 + i0.01 
0.75 0% 1.51 +0.67% 1260 +26% 1.460 + i0.01 
0.74 -1.33% 1.48 -1.35% 1410 +41% 1.460 + i0.01 
0.76 +1.33% 1.49 +0.67% 1120 +12% 1.460 + i0.01 

 

 
Figure 3-11: Comparison of noisy simulated polarization ratios and modeled polarization ratios 
using lognormal size distribution with rg = 0.77 µm, σg = 1.48, NT = 1,780 #/cm3 (first row of 
Table 3-4).  

 
After successfully retrieving a single refractive index, the algorithm is extended to 

retrieve a complex refractive index for each wavelength.  The noisy polarization ratios shown in 

Fig. 3-10b, are used as the input to the extended version.  Results from five different inversion 

runs are shown in Table 3-5.   
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Table 3-5: Summary of results for single lognormal distribution with varying refractive index as a 
function of wavelength. 

rg1 
(μm) 

% 
error σg1 

% 
error 

NT1 
(#/cm3) 

% 
error 

nre + inim for 
407 nm 

nre + inim for 
532 nm 

nre + inim for 
650 nm 

0.72 -4.0% 1.56 +4.0% 1260 +26% 1.460 + 
i0.005 

1.445 + 
i0.005 

1.450 + 
i0.005 

0.75 0% 1.5 0% 1410 +41% 1.460 + i0.01 1.460 + 
i0.005 

1.445 + 
i0.001 

0.74 -1.3% 1.53 +2.0% 708 -29% 1.465 + i0.01 1.46 + i0.01 1.455 + 
i0.01 

0.77 +2.7% 1.48 -1.4% 1780 +78% 1.460 + i0.01 1.445 + 
i0.005 

1.465 + 
i0.001 

0.74 -1.3% 1.52 +1.4% 1550 +55% 1.460 + i0.01 1.465 + 
i0.001 

1.440 + 
i0.05 

 
 

The lognormal distribution parameters retrieved are not significantly improved from the 

values retrieved when including only one complex refractive index value as an inversion variable.  

The geometric mean radii and geometric mean standard deviations retrieved by the algorithm are 

all within 4% error.  The retrieved concentration values vary considerably around the 1,000 

particles/cm3 concentration value that was used to generate the data, but the range of 

concentration values can be explained by the fact that the molecular scattering contribution is 

dominated by the aerosol scattering for this size distribution (see Fig. 3-9).  The complex 

refractive indices retrieved by the algorithm also show a variation between the five runs.  The 

complex refractive indices are close to the values used to calculate the noisy polarization ratios, 

especially considering the fact that the solution space spanned 101 real refractive index values 

(1.3 to 1.8 by 0.005) and eight imaginary refractive index values.  The real refractive indices 

produced by the inversion algorithm are all within ±0.015 (~10%) of the correct value, and the 

imaginary refractive indices are within a magnitude (step size used was half-magnitude) of the 

0.01 value used to simulate the data.  While the retrieved values are reasonably close to the 

correct values, the complex refractive indices retrieved by the previous inversion algorithm, one 

that inverts a single value for all three wavelengths, are actually more accurate than these values.  
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The better accuracy of the single-complex refractive index inversion algorithm also comes with 

the advantage of decreased computation time.  The genetic algorithm that retrieves a single 

complex refractive index value for all three wavelengths is used to invert measured data in 

Chapter 5 of this work.  The complex refractive index produced by the genetic algorithm is then 

slightly altered as a function of wavelength to produce the best fit between the measured and 

modeled polarization ratios.   

3.2.7 Tri-modal lognormal particle distribution 

The genetic algorithm was expanded to retrieve trimodal lognormal size distributions at a 

single, fixed refractive index.  The geometric mean radius ranges for each of the lognormal 

distributions is assigned based on mode models: the fine mode (1 nm – 100 nm), the 

accumulation mode (0.1 µm – 1 µm), and the course mode (1 µm – 30 µm). The ranges for the 

geometric standard deviations, shown in Table 3-6, are selected based on the values reported in 

the literature, specifically in Novitsky (2002) and Stevens (1996) work.  In general, it appears that 

in an urban environment, the fine mode has a broad distribution, and the other two modes are 

much narrower.  The concentration ranges for each of the modes are selected based on the 

simulations in Chapter 2 that explore the effect of changing concentration levels on the 

polarization ratio for various sized particles, shown in Figs. 2-9 though 2-12.  

  Table 3-6: Ranges used in trimodal lognormal size distribution inversion algorithm. 

Mode rg 
(μm) σg 

NT  
(#/cm3) 

Fine 0.001 - 0.10 1.01 -5.01 102 - 105 

Accumulation 0.1 -1.0 1.01 - 3.55 10-1 - 103 
Course 1 - 30 1.01 - 3.55 10-4 - 10 
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The inversion algorithm retrieves the concentration, geometric mean radius, and 

geometric standard deviation for each of the three lognormal distributions that form the trimodal 

size distribution, based on the squared error between the measured and modeled polarization 

ratio.  A trimodal size distribution is used to generate simulated data to test the trimodal inversion 

algorithm. This trimodal lognormal size distribution was retrieved from coastal aerosol scattering 

measurements by Stevens (1996, pg. 124) using the multistatic technique at the single wavelength 

of 532 nm.  The polarization ratios at 407 nm, 532 nm, and 650 nm are calculated using the 

complex refractive index of 1.38 + i0 for each wavelength and white Gaussian noise is added to 

create a signal-to-noise ratio of 35.  The trimodal size distribution, calculated polarization ratios, 

and polarization ratios with Gaussian noise are shown in Fig. 3-12.  The ‘noisy’ polarization 

ratios shown in Fig. 3-12b are used as input data to the genetic inversion algorithm; the trimodal 

size distribution parameters and a single complex refractive index are retrieved by the algorithm.  

Each trimodal genetic algorithm inversion took approximately two hours to converge on a 

Pentium D processor.  Results from three inversions runs are summarized in Table 3-7.  The 

complex refractive index retrieved by the algorithm is extremely close to the correct value of 1.38 

+ i0 for all three inverted cases.  The nine parameters for the trimodal lognormal distributions 

agree very well with the values used to generate the noisy data.  Small variations are seen in each 

of the retrieved trimodal parameters, but the overall size distributions are extremely similar.  The 

three retrieved trimodal size distributions are shown in Fig. 3-14 (dashed lines) along with the 

model trimodal size distribution (black line).      
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Figure 3-12: (a) The trimodal size distribution (b) calculated polarization ratios and (c) calculated 
polarization ratios with additive white Gaussian noise to produce a signal-to-noise ratio of 35.  

 

  Table 3-7: Summary of retrieved trimodal lognormal size distributions. 

 rg1 
(μm) σg1 NT1 (#/cm3) rg2 

(μm) σg2 
NT2 

(#/cm3) 
rg3 

(μm) σg3 
NT3 

(#/cm3) nre + nim 

Run 
#1 0.004 3.70 50,119 0.236 1.35 708 8.90 1.02 0.0089 1.38 + 

i0.0001 
Run 
#2 0.003 3.93 63,096 0.234 1.40 891 8.91 1.01 0.0089 1.38 + 

i0.0 
Run 
#3 0.002 3.95 58,119 0.237 1.38 708 8.87 1.04 0.0112 1.385 + 

i0.0001 

Model  0.0025 3.98 56,610 0.237 1.38 700 8.91 1.01 0.01 1.38 + 
i0 
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Figure 3-13: Trimodal size distributions inverted from simulated polarization ratios (dashed lines) 
compared to model trimodal size distribution (black solid line).  The parameters for the inverted 
size distributions are summarized in Table 3-7. 

 

The comparison between the modeled polarization ratios calculated using the retrieved 

trimodal size distributions and complex refractive index in Table 3-7, and the ‘noisy’ polarization 

ratio used as input for the inversion algorithm are shown in Fig. 3-14.  An impressive fit of the 

polarization ratios are achieved, given the number of inversion variables and the presence of 

Gaussian noise that is corrupting the input data.  The results obtained from this test run indicate 

that reasonably accurate trimodal size distributions and a complex refractive index can be 

retrieved using this 10-variable genetic algorithm. The results obtained from the algorithm should 

only require minimal optimization of the parameters to obtain the best fit between the modeled 

and measured data. 
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Figure 3-14: Comparison between ‘noisy’ simulated polarization ratios (solid lines) and 
polarization ratios calculated using the trimodal lognormal size distribution retrieved by genetic 
algorithm in Table 3-7 (dashed lines). 

Trimodal Inversion #1

Trimodal Inversion #2

Trimodal Inversion #3
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Chapter 4 
 

Multiwavelength-Multistatic Scattering Hardware 

The main objective of this work is to analyze scattering measurements at multiple 

wavelengths and angles to determine microphysical properties of the scattering aerosols.  This 

analysis uses simultaneous measurements of multiple wavelengths at different angles to examine 

the same scattering volume, thus providing a more robust analysis in complex aerosol layers.   

These measurements combine three continuous-wave (CW) laser wavelengths in one transmitted 

beam that is imagined using CCD cameras with wide field-of-view focusing lenses.  A 

transmission diffraction grating is placed in front of the focusing lens; thereby spreading the 

different wavelengths across the CCD array and creating two-dimensional data.  The angle-

dependent scattering is spread across the columns of the CCD and the wavelength-dependent 

scattering is spread across the rows.  

4.1 Multiwavelength Transmitter 

Three 100 mW diode lasers at wavelengths of 407 nm, 532 nm, and 650 nm are 

overlapped and co-aligned into a single transmitted beam.  Visible wavelengths were selected 

based on the sensitivity of the CCD cameras that we had available and for the ease of alignment. 

The specific laser diode wavelengths were selected based on availability, price, and to provide a 

large wavelength spread.  The co-alignment ensures that the lasers are interrogating the same 

volume of aerosols and that scattering from each beam is located in the same horizontal plane 

imaged by the CCD camera.  The lasers beams are combined using dichroic mirrors, which will 

either transmit or reflect light based on its wavelength.    
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The polarization state of the combined lasers is important, as our technique is dependent 

on using two orthogonal polarizations of the incident light.  To ensure that all of the transmitted 

light is in the same plane of polarization, the combined beam is sent through a polarizing 

beamsplitter, which transmits only the polarization component that is parallel to the scattering 

plane.  The polarization of the combined laser beam is adjusted by manually rotating a broadband 

half-waveplate back and forth between two predetermined angles to produce parallel and 

perpendicular polarization with respect to the scattering plane.  The multiwavelength transmitter 

is shown in Fig. 4-1 and the retardance of the waveplate as a function of wavelength is shown in 

Fig. 4-2.  The small variance of the retardance around the desired 0.5 will introduce a polarization 

rotation error of +3.6 degrees for 532 nm, -3.6 degrees for 650 nm, and -7.2 degrees for 407 nm.  

This variation in the retardance will introduce a small level of uncertainty in the orientation of the 

polarized light exiting the transmitter.  This uncertainty later transfers to error in our measured 

polarization ratios, because the incident laser beams are not perfectly polarized parallel or 

perpendicular to the scattering plane of incidence. The impact of the polarization ratio error 

introduced by the inherent uncertainty of the half waveplate retardance is explored in Chapter 5.   

 

 
Figure 4-1:  Picture of the revised transmitter with the waveplate fixed in the transmit path. 

Green laser 
532 nm 

Blue laser 
407 nm

Red laser 
650 nm

Turning mirror Dichroic mirrors 

λ/2  waveplate 

Polarizing 
beamsplitter
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Figure 4-2: Fractional retardance of the half-wave plate response as a function of wavelength 
(CVI Melles Griot datasheet). 

4.2 Multistatic Receivers 

One great advantage to this multistatic approach is the simplicity of the setup.  All that is 

required is a laser beam with a polarization rotator and a CCD camera and a wide-angle lens to 

capture a range of angular scattering.  This makes the system extremely portable and flexible for 

use in many different scenarios.  The multistatic receivers described here were used in a 

laboratory setting, in an aerosol wind tunnel, and outdoors across a farm pasture with no 

modifications to the setup. 

Two Meade Deep Sky Imager PROTM II monochromatic CCD cameras were used during 

the scattering experiments.  The camera uses a 16-bit CCD chip, Sony’s ICX429ALL, which 

exhibits the spectral response characteristics shown in Fig. 3-3.  The chip has 752 x 582 pixels, 

with each pixel having dimensions of 8.3 µm x 8.6 µm.  An 8 mm focal length lens with a 45 

degree field-of-view is mounted in front of each CCD camera.  The cameras are mounted on 3-

axis tripods with horizontal levels for ease of alignment relative to the transmitted beams.  A 
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transmission grating mounted in front of the camera lens, as shown in Fig. 3-4, spreads the 

wavelengths down across the CCD array.  

 
Figure 4-3: Spectral relative response of CCD camera (ICX429ALL). 

 

 
Figure 4-4: CCD camera with lens and diffraction grating mounted. 

 

Two transmission gratings were used for the scattering measurements.  The spectral 

response characteristics of both the 300 lines/mm and 600 lines/mm grating are shown in 

Fig. 4-5.  The 300 lines/mm grating offers less wavelength spread but has a higher transmission 

efficiency across the wavelength range. 
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Figure 4-5: Spectral response for transmission gratings (Thorlabs). 

 

4.3 Images as Data   

Using a CCD imager as a detector requires care during operating periods to remain below 

the saturation level of the camera’s pixels while maintaining reasonably high signal strength.  It is 

important to ensure that the scattering data is well above the noise floor of the camera, so that it is 

not washed-out by noise.  This was accomplished by monitoring a histogram of the pixel 

intensities and adjusting the integration time of the camera. The target level used to adjust the 

integration time was typically 50%-70% of the full range of the camera pixels.  This level is well 

above the noise floor and safely below the saturation point.  It is also beneficial to average 

multiple images of the same exposure time, called stacking, in order to further increase the signal 

to noise by averaging out random noise. There are sources of noise when using a CCD that can 

not be eliminated during the operation of the camera or through averaging. These noise sources 

are related to the electronics operating the CCD and can be mostly removed by using image 

processing techniques. 
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Ideally, the number of electrons stored in a CCD array would be only dependent on the 

number of photons ‘seen’ by each pixel during exposure, and every pixel in the array would have 

the exact same response to all wavelengths.  Unfortunately, this is never the case.  CCD images 

are often corrupted by dark noise, bias offset noise, and readout noise.   CCD imagers can exhibit 

varying pixel sensitivities which also contribute error to the data depending on the data analysis 

techniques employed.  Another common error introduced in data images is uneven illumination of 

the pixels, which may be caused by the focusing optics or by dust in the optical path.    There are 

a number of techniques used to minimize these sources of noise and error when using images as 

data. 

Dark current is the generation of electrons through thermal vibration.  Dark current fills 

each pixel with electrons at a relatively steady rate dependent on the temperature of the CCD chip 

and the length of the exposure.  Dark current noise is a linear response and repeatable, which 

means that correction for this type of noise is rather simple.  A dark frame is taken with the CCD 

imager at the same temperature and using the same exposure as used for the data collection.  This 

dark frame is then subtracted from each data image to remove the dark current noise.  As this 

subtraction is done pixel by pixel, it will also remove error introduced into the image by hot 

pixels, which are pixels that record high intensities regardless of the photon flux impinging on 

them.  Bias offset is a constant value added to each pixel caused by the electric ‘pre-charge’ 

applied to the CCD chip by the camera electronics to activate its photon-collecting ability.  

Readout noise is structured noise introduced by the voltages applied to each pixel by the camera 

electronics in order to collect the image from the CCD array.  Both bias offset and readout noise 

are removed from an image when a dark frame is taken at the same temperature and the same 

exposure length, and is then subtracted from the data image. 

Varying pixel sensitivities and uneven illumination of the CCD can be corrected using 

flat field frames.  Flat field calibration, sometimes referred to as a grayscale calibration, is a little 
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more complicated than dark current correction and involves illuminating the CCD array with a 

uniform white light source.  The exposure length should be long enough to reach roughly 50% of 

the saturation level.  A dark frame must be subtracted from the flat field frames and multiple flat 

frames should be averaged together to create a master flat field frame.  Then each pixel value in 

the image is divided by the maximum pixel value to produce a scaling factor for each pixel.  

Dividing your original data frame by these scaling factors should produce a uniform image with 

the same value for every pixel.  The scaling factors for each pixel are then applied to subsequent 

data images to correct for varying pixel sensitivities. 

Flat field corrections were not necessary for our measurements due to the ratio technique 

utilized in forming the polarization ratio during the data analysis.  Varying pixel sensitivities do 

not add error to our data because we are primarily creating a ratio of data collected at the same 

pixel in two images, and only the polarization of the light changes between the two images.  The 

application of this ratio technique does depend on the polarization bias of the receiver, which 

ideally would be zero, indicating that there is no variation in pixel sensitivities based on the 

polarization of the incident light.  An experiment using a uniform white-light source and 

polarization gratings was conducted to investigate the polarization bias of the camera and the 

transmission grating.  Results from the experiment indicate that there is very little polarization 

bias in the receiver, which is supported by the information presented by the manufacture.    

4.4 PSU Chamber Study 

The first experimental study investigates the feasibility of expanding the multistatic 

polarization ratio technique, which was demonstrated by Stevens (1996), Novitsky (2002) and 

Park (2008) using a single wavelength, to multiple wavelengths across the visible spectrum.  The 

intent of this experiment was to ensure that multiple wavelengths could be detected 
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simultaneously using a monochromatic CCD array and a transmission diffraction grating, and to 

demonstrate the advantages of multiple wavelengths in determining aerosol properties.  The 

scattering experiments were performed using an aerosol generator which produced a size 

distribution of smoke particles that had been characterized by Park (2008).  This will give us a 

theoretical comparison to help determine if the system is operating as designed.   

The artificially generated polyalpha olefin (PAO) smoke is held by an aerosol chamber 

that is 122 cm long, 122 cm wide, and 21 cm high.   A viewing window is located on the 

entrance-side of the chamber to measure scattering angles between approximately 127 through 

170 degrees, as shown in Figure 4-6  

 
Figure 4-6: PSU aerosol chamber setup. 

 
An example of the angular scattering imaged using a 300 lines/mm grating is shown in 

Fig. 4-7.  Although it is difficult to perceive from viewing the image of raw data shown in Fig. 4-

7, variations in the scattering phase function along the beam can be extracted through a series of 

processing techniques.  Examination of Fig. 4-7 reveals a slight bend to each of the ‘rows’ of 

scattering intensities and a de-focusing of the scattered beams from the left side of the image to 

the right side. The bend is due to imaging off-axis points through the diffraction grating, and the 

de-focusing is a near-field effect; both add some complexity to the analysis of the image. 

Aerosol Chamber

Monochromatic CCD imager with 

48° fov lens and diffraction grating  
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Transmitted Laser 

Scattering angles 
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An image alignment procedure was used to accurately extract the intensities as a function 

of wavelength and angle from the image.  Vertical strings were equally spaced along the length of 

the chamber at 10 centimeter intervals and an image was taken of the lasers striking the strings. A 

second order polynomial is fit to the bright laser spots, as shown in Fig. 4-8.  The polynomials are 

then used to extract the scattering data and assign scattering angles to pixel locations for each 

wavelength from the polarized scattering images.       

 
Figure 4-7: An image of the angular scattering through the 600 lines/mm diffraction grating. 

 

 
Figure 4-8: Data extraction method. 

 
The scattering information for each wavelength falls on multiple rows of the CCD array, 

and the number of rows that contain scattering information changes as a function of CCD column 

due to the defocusing of the beam in the near-field of the camera.  The beam profile is examined 

for each wavelength as a function of column in order to determine the number of rows to sum for 

0th order combined beam 

1st order 407 
1st order 532 nm 

1st order 650 nm 

2nd order 407 nm 
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calculating the total scattered intensity in each column of the CCD. The 25% intensity point on 

each side of the maximum intensity pixel is used to determine the number of rows to integrate 

across for each diffracted laser beam. This value was selected to minimize the noise in the signal 

while still collecting a large majority of the scattered light.  This process is depicted in Fig. 4-9, 

where the red asterisks indicate the pixel that has fallen below 25% of the maximum pixel value.  

In Fig. 4-9, the values from eight pixels are added together to calculate the 532 nm scattered 

intensity at CCD column 100, and the values from 21 pixels are added to calculate the intensity at 

column 600.  The integrated scattered intensities for the three wavelengths for parallel and 

perpendicular polarized incident light are shown in Fig. 4-10.  The polarization ratios formed by 

dividing the parallel scattering intensities by the perpendicular scattering intensities for the PAO 

fog are shown in Fig. 4-11. 

 
Figure 4-9: Beam profile of diffracted 532 nm laser at (a) left side of image (column 100) and at 
(b) right side of image (column 600). 
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Figure 4-10: Scattering intensities collected from PAO fog in the PSU aerosol chamber on 
8 March.  Solid lines are parallel scattering intensities and dash lines are perpendicular scattering 
intensities for 407 nm (blue), 532 nm (green), and 650 nm (red). 

 
Figure 4-11: Polarization ratios for PAO fog at 407 nm (blue), 532 nm (green), and 650 nm (red)  
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 The genetic algorithm is used to obtain a lognormal size distribution and complex 

refractive indices as a function of wavelength from the multiwavelength-multistatic data.  The 

lognormal size distribution retrieved by the genetic algorithm that produces the lowest-squared 

error between the modeled and measured polarization ratios has a geometric mean diameter of 

300 nm and a standard deviation of 1.66.   Figure 4-12 shows the comparison between the 

measured polarization ratio and the best-fit model calculated using the retrieved best-fit 

lognormal size distribution.  The refractive indices used to calculate the best-fit polarization ratios 

are 1.465 + i0.001 for 407 nm and 1.455 + i0.0005 for 532 nm and 650 nm.  The size distribution 

of the PAO fog produced by the TDA-5A aerosol generator was measured 30 times by Park 

(2008, pg. 120) using a scanning mobility particle sizer, with one of the measurements shown in 

Fig. 4-13.  A lognormal distribution was fit to the averaged data to find a geometric mean 

diameter of 317 nm ± 6.95 nm and a geometric standard deviation of 1.66 ± 0.04. The mean 

diameter and standard deviation of the particle size distribution measured by the scanning 

mobility particle sizer is consistent with the multiwavelength-multistatic measurement and 

algorithmic result. 

 The differences in magnitude of the polarization ratios are most likely caused by a few 

factors, particularly the quickly changing concentration of the particles. A condensation particle 

counter was used to monitor the concentration of the PAO fog during the measurement.  The 

measured concentration is plotted in Fig. 4-14, and shows that the concentration fell from 

~225,000 to ~220,000 particles/cm3 throughout the course of the measurements. 



 

 

82

 

Figure 4-12: Comparison between measured (solid lines) and modeled (dashed lines) polarization 
ratios using a lognormal probability density function with dg = 300 nm σg = 1.66. 

 

 
Figure 4-13: Particle size distribution of PAO fog generated with TDA-5A aerosol generator 
measured by Park (2008, Fig. 3.13) using scanning mobility particle sizer. 

 

 



 

 

83

 
Figure 4-14: Concentration of PAO fog as measured by a condensation particle counter on 8 
March.  The blue box indicates the time of measurements. 

 

 The perpendicular scattering measurements were made first, indicating that the 

perpendicular scattering intensities will be slightly higher than the corresponding parallel 

measurements collected from a lower concentration of particles.  The ability to robustly retrieve 

lognormal size distributions from data containing non-uniformities along the measurement path 

was a primary goal of this work.  In this case, the multiwavelength-multistatic technique and 

coupled genetic inversion algorithm arrived at a mean particle diameter solution that was within 

6% of that measured by the SMPS.  The inverted result for the width of the particle size 

distribution was exactly what was measured by the SMPS with a small degree of uncertainty (less 

than 3%).   

The extinction cross sections of a lognormal size distribution with a mean diameter of 

300 nm and a geometric standard deviation of 1.66 are 0.1876 μm2, 0.1290 μm2, and 0.09132 

μm2, for 407 nm, 532 nm, and 650 nm respectively,  using a refractive index of 1.455 + i0.001.  

The extinction coefficients for 407 nm, 532 nm, and 650 nm for a lognormal size distribution of 
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225,000 particles/cm3 with a geometric mean diameter of 300 nm and a geometric standard 

deviation of 1.66 are 0.0421 m-1, 0.0290 m-1, and 0.0205 m-1, respectively.  The longest path 

length between the scattering volume and the camera is roughly 1.5 meters, and using the highest 

extinction coefficient of 0.0422 m-1 for 407 nm, the highest optical depth encountered during the 

scattering measurements is 0.063 m-1. Multiple scattering should not be a significant factor in the 

scattering measurements, as the optical depths are below the value of 0.1 (van de Hulst, 1957). 
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Chapter 5 
 

EPA Aerosol Wind Tunnel 

Multistatic-multiwavelength scattering measurements were performed at the U.S. 

Environmental Protection Agency’s (EPA) Aerosol Test Facility (ATF) in Research Triangle 

Park, North Carolina. The aerosol wind tunnel in the ATF is unique in the world; the special 

features are its size, fluid parameter (temperature, humidity, velocity, and turbulence) control, and 

integration of multiple state-of-the-art aerosol generation and measurement systems. The aerosol 

generation system was designed specifically for this tunnel and is capable of producing 

monodisperse aerosols while maintaining uniform particle size, shape, and density. The ability to 

stabilize and control the scattering environment while simultaneously monitoring the aerosol size 

and number concentration made this a great facility for testing the multiwavelength-multistatic 

scattering technique, and evaluating the inversion algorithm.  A layout of the aerosol wind tunnel 

is shown in Fig. 5-1 and a side view of the tunnel during our test is shown in Fig. 5-2.  There are 

two different sections of the tunnel that can be used for aerosol testing, the Human Exposure Test 

Section (HETS) and the Sampler Test Section (STS).  The HETS, with dimensions of 12 feet x 10 

feet x 30 feet, can easily accommodate several people, which is convenient for setting up test 

equipment.  There are three aerosol distribution points in the aerosol tunnel, though only two 

were used for the scattering experiments.  The aerosols generated by TSI’s Vibrating Orifice 

Aerosol Generators (VOAG) entered at the location labeled Aerosol Distribution 1, and the fog 

produced by MDG’s Fog Generator entered the tunnel Aerosol Distribution 2 in Fig. 5-1.  The 

wind speed, temperature, and humidity of the entire tunnel were automatically controlled, and 

constantly monitored to provide stable conditions throughout the scattering measurements.



 

 

  

 

Figure 5-1: EPA Aerosol Test Facility Wind Tunnel. 



 

 

 
Figure 5-2: Photograph of the HETS portion of the ATF Wind Tunnel. 

5.1.1 Experimental setup 

The multiwavelength-multistatic scattering measurements were conducted in the HETs 

portion of the wind tunnel (Figs. 5-1 and 5-2) because the larger area made it easy to set up the 

cameras and the extra equipment necessary for instrument alignment.  The combined laser beams 

entered the chamber through a hole in the floor of the HETS and reflected out across the chamber 

using a 45-degree turning mirror as shown in Fig. 5-3a.  This was done to protect the transmitter 

optics from the different oils in the fog fluids and to ensure that no unnecessary turbulence was 

added to the aerosol flow by objects encountered as it traversed the wind tunnel.  An optical 

power meter head was placed approximately 8.5 m away from the turning mirror (Fig. 5-3b).  The 

power meter served the dual purpose of monitoring the power of the lasers throughout the 

experiments and as a termination/collection point for the combined beams.    
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Figure 5-3: (a) Turning mirror and laser path (b) power meter head at end of path. 

 
The receiver CCD cameras were placed parallel with the entry point for the lasers to 

collect backscattering angles.  The USB cables that connect the cameras to the computer were 

routed through a hole in the floor, which was also used as the entry for the tubes that fed two 

point sensors used to monitor the aerosols in the tunnel.  These sensors are explained in depth in 

section 5.1.3.   The camera set-up and tubes that feed the aerosol sensors are shown in the 

photograph in Fig. 5-4. 

 

Figure 5-4: Camera setup and aerosol sensor feed tubes. 

turning mirror

Aerosol feed tubes
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5.1.2 Angle assignment 

An alignment image was used to accurately extract the spatial location and assign a 

scattering angle to the intensities from the scattering images. Vertical wires were equally spaced 

at 61 cm intervals (2 feet) along the length of the wind tunnel section and an image is taken of the 

laser beams striking the wires. The perpendicular distances from each camera to the laser beams 

are recorded, as well as the linear distance to the first dangling wire in each camera’s field of 

view.  These distances are used to calculate the scattering angles imaged by each camera.  The 

general setup for the two cameras is depicted in Fig. 5-5.  An alignment image taken with both 

cameras is shown in Fig. 5-6. The bend in the diffraction pattern image of the scattered beams is 

caused by imaging off-axis points through the diffraction grating, and adds some complexity to 

the analysis of the image.  The bend could have been minimized by using a confocal 

configuration but optics to accomplish this were not available. Second order polynomials are fit 

to the center pixels for each wavelength and used to extract the scattering intensity from the 

images (Fig. 5-7). The polynomial equation is used to locate a ‘starting’ point as a function of 

wavelength for each column.  The beam profile is examined for each laser wavelength as a 

function of column and the 10% intensity point on each side of the maximum intensity point is 

used to determine the number of rows to integrate across for each diffracted wavelength.  The 

scattering intensities are then smoothed using a 5-point moving filter. The angle-dependent 

polarization ratio is calculated by dividing the integrated scattering intensity for incident parallel 

polarization by the integrated scattered intensity for incident perpendicular polarization on a 

column-by-column basis. The polarization ratio is then resampled at half-degree intervals and 

used by the genetic algorithm to determine the corresponding size distribution of particles in the 

scattering volume.  
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Figure 5-5: EPA camera setup. 

 

 
Figure 5-6: Alignment images for Camera 1 (300 lines/mm) and Camera 2 (600 lines/mm). 

 

 

Figure 5-7: Extraction polynomials for Camera 1 and Camera 2.  
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5.1.3 Supporting aerosol measurement instruments 

The aerosols in the wind tunnel were simultaneously monitored by a TSI Model 3321 

Aerodynamic Particle Sizer® spectrometer (APS) and a TSI Model 3007 Condensation Particle 

Counter (CPC). The APS sizes particles into 52 bins in the range from 0.5 to 20 microns using a 

time-of-flight technique that measures aerodynamic diameter.  Aerodynamic diameter is defined 

as the physical diameter of a unit density (1 gm/cm3) sphere that settles through the air with a 

velocity equal to the particle under measure.  The APS accelerates the aerosol sample flow and 

then measures the time it take to cross two points, with larger particles accelerating slower due to 

their inertia.  An advantage to this sizing technique is that the measurement is independent of 

aerosol type (refractive index).  The APS can be programmed to record averaged size 

distributions at any interval between one second and 18 hours.  The maximum particle 

concentration recommended by the TSI Model 3321 user’s manual for approximately ±10% 

accuracy is 1,000 particles/cm3, and suggests that collected data is “usable” up to concentrations 

of 10,000 particles/cm3.  The APS reports size distributions as normalized number concentrations 

(dN/dlog(da)), which means that the particle number concentrations have been divided by the 

logarithm of the particle size.  Normalized number concentrations are converted to number 

concentrations (dN/dda) by multiplying each concentration value by the difference between the 

logarithm of the size bins lower and upper edge, 
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Aerodynamic particle diameter (da) is then converted to geometric particle diameter (dg) using the 

formula: 
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where SG is the specific gravity of the spherical particles. 

The CPC can detect particles in the size range of 0.01 to greater than 1.0 micron, at 

concentrations between 1 and 100,000 particles/cm3 with ±20% accuracy (TSI model 3007 CPC 

user’s manual).  The CPC counts particles by drawing the aerosol sample through vaporized 

alcohol and then into a cooled condenser.  The aerosols act as condensation sites for the 

vaporized alcohol, so that the aerosols quickly grow to a size where they can be counted by an 

optical detector.  This instrument can detect much smaller particles and much higher particle 

concentrations than the APS, though it lacks the capability to determine the size distributions. 

5.2 MDG Fog 

The first test examined the multiwavelength-multistatic scattering from fog particles 

generated by the MDG MAX APS 3000 fog generator.  The amount of fog that is produced by 

the generator is controlled by adjusting the pressure on the compressed nitrogen tank that feeds 

the generator.  The concentration of the fog was monitored by the APS and the CPC as shown in 

Fig. 5-8.  The dark dashed lines above and below the concentration measurements from the two 

instruments show the ±20% concentrations, which are the concentration accuracies indicated by 

the manufacturer.  Figure 5-8 also shows the time stretches that data images are recorded during 

the fog experiment.  The difference in concentration reported by the two instruments is due to 

their different capabilities to detect particles in different size ranges.  The APS can only size 

particles down to aerodynamic particle diameters of 0.5 µm, while the CPC can detect particles 

down to a single nanometer.  The differences in the reported concentrations indicate that roughly 

half of the particles generated by the MDG fog generator are smaller than the lowest detectable 

diameter of the APS.   
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Figure 5-8: Particle concentration as measured by the CPC and APS. Dotted lines indicated ±20% 
accuracy for the particle counting instruments. Boxes indicate times that data was taken on 24 
November for four different datasets, labeled #1 - #4. 

 

It is also important to bear in mind that the recommended maximum concentration level 

for the APS is 1,000 particles/cm3 and the concentration of the MDG fog is well above this range.  

The effect of operating the APS at this concentration level can be seen in the number of times that 

the APS rejected particle counts due to coincidence.  Coincidence occurs when more than one 

particle is inside the APS measurement chamber during a measurement, and is categorized by the 

APS read-out record as an ‘event 3’.  When an ‘event 3’ is detected, the particle count and size 

obtained from that measurement is not included in the reported APS size distribution or 

concentration level.  A high number of coincidences skews the concentration level to a value 

much less than it actually is, and would also change the shape of the size distribution.  Figure 5-9 

shows the raw counts measured by the APS during the time that dataset #3 was collected.  Notice 

#1 #2 #3 #4 

Lowered 
pressure on 
fog 
generator 
from 5 psi 
to 1 psi 
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that a significant number of particles were classified as <0.5 µm (aerodynamic diameter), 

showing that a large part of the size distribution falls below the range of the APS.  The number of 

coincidence counts, 114,835, is on the same order as the number of counts that get ‘binned’ into 

each defined size interval.   This will contribute to an under-reporting of the aerosol number 

concentration by the APS unit.   The particle number size distributions (radius) measured by the 

APS, after correcting for geometric particle size and scaling the distribution by the logarithm of 

the bin widths, during the same approximate time as the data collection for the four datasets in 

Fig. 5-8 are shown in Fig. 5-10. 

 

 
Figure 5-9: Raw counts from APS for 24 Novemeber at ~3:16 PM, including counts of 
coincidence (more than one particle in the measurement chamber.  These counts are not included 
in reported concentration measurements). 
 
 

Coincidence: 114,835 counts 
Reported concentration: 2,715 #/cm3 
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Figure 5-10: APS particle size distribution for the 4 datasets after removing the lowest ‘catch-all’ 
size bin.   

5.2.1 Polarization ratios 

The background image and dark counts were subtracted from the ‘raw’ scattering images 

to produce a ‘processed’ image used for data extraction.  The extraction algorithm for the EPA 

fog used 10% of the maximum intensity in each column as the cut-off point to determine how 

many rows to integrate across for each wavelength and column.  The integrated quantities 

represent scattered intensities for each wavelength as a function of scattering angle and 

polarization.  Examples of these scattering intensities are shown in Fig. 5-11 with a five-point 

moving-average smoothing applied.  Only the pairs of parallel and perpendicular intensities for 

each wavelength can be compared, not the relative intensities between wavelengths because each 

laser diode had different power levels and transmission efficiencies through the transmission and 

collection optics.   
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Figure 5-11: Relative scattering intensities for parallel incident light (solid lines) and 
perpendicular polarized light (dashed lines) at 407 nm (blue lines), 532 nm (green lines), and 650 
nm (red lines). 

 
The extracted parallel scattering intensities are divided by the extracted perpendicular 

intensities to form the polarization ratio as a function of wavelength and CCD column.  The 

alignment images are used to map each column of the CCD array to a scattering angle (Fig. 5-11) 

to produce an angle-dependent polarization ratio (Fig. 5-12).  The spurious spikes at the peak of 

the 407 nm polarization ratio curve between 155 and 160 degrees in Fig. 5-12 are caused by 

reflections off of the back wall, as shown by the scattering image in Fig. 5-13.  A 5-point moving-

average filter is applied to the scattering intensities prior to the division.  The number of points to 

use in the filter was selected based on the knowledge that the inversion algorithm computed the 

error between the polarization ratios at half degree intervals.   Due to the geometry of our 

focusing lens and CCD array, seven columns or horizontal points corresponds to a half degree 

(i.e. scattering angle) smooth. 
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Figure 5-12:  Polarization ratio for dataset #3 with 5-point moving-average smooth applied. 

 
Figure 5-13: Scattering image during the EPA fog experiment. 

 

The measured polarization ratios for datasets #1 - #4 are shown in Figs. 5-14 and 5-15, 

and information regarding the collection of each dataset are summarized in Table 5-1.  The 

location and magnitude of the peaks are similar for all four datasets, which lends confidence to 

the measurement. There are distinct differences between the polarization ratios collected when 

Background Reflections 
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the fog generator was set at the higher pressure setting of 5 psig (datasets #1 and #2) and the 

polarization ratio curves measured using the lower pressure setting of 1 psig (dataset #3 and #4).  

This shows that the particle size distribution generated may change as a function of the pressure 

setting of the instrument. 

Table 5-1: Collection information for datasets #1 - #4. 

Dataset Angle Range Acquisition 
Start Time 

Integration 
Time 

Fog 
Pressure 

Diffraction 
Grating 

#1 126° - 169° 3:09:58 PM 1.3 s 5 psig 600 lines/mm 
#2 132° - 176° 3:11:20 PM 0.3 s 5 psig 300 lines/mm 
#3 132° - 176° 3:16:10 PM 0.3 s 1 psig 300 lines/mm 
#4 126° - 169° 3:17:36 PM 1.3 s 1 psig 600 lines/mm 

 
 

 
Figure 5-14: Polarization ratio for datasets #1 and #2. 
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Figure 5-15: Polarization ratio for datasets #3 and #4. 

5.2.2 Inversion parameters and results 

 All four measured polarization ratios are first inverted using the simple two-variable 

genetic algorithm explained in Section 3.2.1 that produces the geometric mean and geometric 

standard deviation for a single lognormal probability density function.  A single fixed value is 

used for the refractive index of the particles, requiring the algorithm to load only one look-up 

table of unit scattering intensities, significantly reducing the time of computation for each 

generation of the algorithm.  The average computation time to convergence for the genetic 

algorithm is approximately one minute on a Pentium D processor.  The inverted lognormal 

probability density functions retrieved by the genetic algorithm for dataset #1 through dataset #4 

are summarized in Table 5-2.   
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Table 5-2: Summary of two-variable inversion of datasets #1-#4 for EPA fog. 

 Geometric Mean Radius, rg Geometric Standard Deviation, σg 
Dataset #1 0.23 μm 1.30 
Dataset #2 0.23 μm 1.29 
Dataset #3 0.20 μm 1.32 
Dataset #4 0.21 μm 1.34 
 

 
A grid search algorithm was run for a truncated section of the solution space to ensure 

that the algorithm was converging on the global solution. The grid search varied the lognormal 

geometric mean from 0.1 microns to 1.0 micron by 0.01 micron steps and varied the geometric 

standard deviation from 1.01 to 3.0 by 0.01 steps. The truncated solution space is shown in Fig. 5-

16, and the geometric mean and geometric standard deviation that was produced by the genetic 

algorithm inversion for dataset #3.  The grid search shows that the highest fitness (or lowest 

squared error between the measured and modeled polarization ratios) occurs at a geometric mean 

radius of 0.20 µm and geometric standard deviation of 1.32, which matches the results from the 

genetic algorithm.   

 

Figure 5-16: Solution space for dataset #3 using a fixed refractive index of 1.47 + i0.001. 



101 

 

 

The concentration measurements reported by the APS and the CPC are around 104 

particles/cm3 as shown in Fig. 5-8.  When the concentration is added to the algorithm as a 

retrievable variable, the concentration that is returned is highly variable (between 103 and 106 

particles/cm3) because the concentration of the smoke is within a range where the polarization 

ratio is less sensitive to the molecular scattering contribution (see Chapter 2).  The way that the 

concentration of the particles is determined in the genetic algorithm is based on the contribution 

of the molecular scattering to the polarization ratio, and when the concentration is high, the 

molecular scattering contribution is very small, and the polarization ratio changes little with a 

change in particle concentration.   

  Another way of determining the concentration of particles is by measuring the 

extinction of light as it passes through the scattering volume.  Power measurements at the three 

wavelengths were recorded during this experiment using a broadband power meter: however, 

these measurements should be viewed with a rather skeptical eye.  The power meter was mounted 

on a ring stand at the end of an 8.5 m path, and the laser beams propagating along the path were 

turned using a mirror which was mounted to a ring stand at the upstream end of the chamber.  The 

ring stands were set on the floor of the EPA tunnel as shown in Fig. 5-3a, and there was a large 

amount of vibration from the tunnel floor.  The active area of the power meter is rather small (1 

cm2), and the lasers could sometimes vibrate back and forth quickly across this active area.  The 

power measurements were recorded by hand based on watching the fluctuations of the power 

over a few seconds and taking a quick mental average.  These power measurements are displayed 

in Table 5-3 with the resulting extinction coefficient.  The geometric mean diameter of the 

lognormal size distribution retrieved by the genetic algorithm, 0.4 µm, was used to calculate the 

extinction cross section at the laser wavelengths. The extinction cross sections for a 0.4 µm 

particle (diameter) for the three wavelengths are: 0.4075 µm2 for 407 nm, 0.2594 µm2 for 532 
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nm, and 0.182 µm2 for 650 nm.  These cross sections are then used to calculate the total particle 

concentration that would be required to produce the extinction coefficients calculated from the 

power measurements and the path length of 8.5 m.  The calculated concentrations do vary based 

on wavelength, but this was expected from the data collection method (the so-called ‘eye-balling’ 

method).  The calculated concentrations (other than the 532 nm horizontal measurement) are 

within ±20% of the concentration measured by the CPC and do serve as an additional ground-

truth for the approximate concentration level of the MDG fog.  The optical depth, calculated as 

the extinction times the path length, is much less than 0.1, indicating that multiple scattering 

should not be a significant factor in the measurements (van de Hulst, 1957). 

Table 5-3: Power measurements to calculate extinction for MDG fog 

 Horizontal Polarization Vertical Polarization 
 407 nm 532 nm 650 nm 407 nm 532 nm 650 nm 

Power w/o 
aerosols (mW) 

13.96 14.10 13.5 11.28 14.3 12.89 

Power w/MDG 
fog (mW) 13.3 13.91 13.34 10.8 14.07 12.7 

Total Extinction 
From Power 

Measurements 
(1/km) 

5.698 0.758 1.403 6.116 1.907 1.747 

Particle 
Concentration  

Calculated 
From Power 

Measurements 
(#/cm3) 

13,983 2,923 7,707 12,554 7,354 9,599 

Average CPC 
Particle 

Concentration  
 (#/cm3) 

10, 750 10,750 

Total Extinction 
Calculated 
From CPC 

Concentrations 
(1/km) 

4.38 2.79 1.96 4.38 2.79 1.96 

 

 The average concentration measured by the CPC for each dataset (displayed in Table 5-4) 

is used to scale the lognormal probability density functions to produce particle size distributions 
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for the four datasets.  The particle size distributions are divided by the logarithms of the bin 

widths to produce a ‘normalized’ particle size distribution (dN/dlog(d)), shown in Fig. 5-17 for 

the four datasets.  The ‘normalized’ particle size distributions measured by the APS at the same 

approximates times as the measured datasets are also shown in Fig. 5-17 for comparison.  The 

lognormal parameters and average concentration used to create the normalized particle size 

distributions are summarized in Table 5-4 for each dataset. 

 
Figure 5-17: Normalized lognormal size distributions inverted from the polarization ratios (solid 
lines) and the corresponding normalized size distribution measured by the APS (lines with 
markers). 

 

Table 5-4: Summary of parameters used to calculate normalized particle size distributions shown 
in Fig. 5-18 for datasets #1-#4 for MDG fog. 

 Geometric Mean 
Radius, rg 

Geometric Standard 
Deviation, σg 

Average CPC Concentration, 
NT 

Dataset #1 0.23 μm 1.30 10,561 #/cm3 
Dataset #2 0.23 μm 1.29 10,790 #/cm3 
Dataset #3 0.20 μm 1.32 10,079 #/cm3 
Dataset #4 0.21 μm 1.34 9,153 #/cm3 
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 Unfortunately, only a portion of the particles produced by the MDG fog generator fell 

within the size range of the APS, making it difficult to quantify the total difference in size 

distribution between the APS and the inversion algorithm.  The difference between normalized 

particle size distributions at particle diameters within the APS range is most likely due to a 

collection of factors: (1) operating the APS outside of its recommended concentration range; (2) 

using a single value for the complex refractive index for all three wavelengths in the inversion 

algorithm, (3) error in the polarization ratio introduced by the variation of retardance of the 

polarizing beamsplitter as a function of wavelength (the incident light is not perfectly parallel or 

perpendicular to the scattering plane); and (4) errors introduced into the polarization ratio by the 

background reflections. 

 The recommended operating range of the APS and the error in the size distribution 

caused by ‘coincidence’ has been previously discussed in Sections 5.1.3 and 5.2.  The 

concentration level of ~10,000 particles/cm3 is well above the recommended maximum 

concentration of 1,000 particles/cm3.  A high concentration of particles increases the likelihood 

that two particles are in the measurement chamber of the APS unit at the same time, called 

coincidence.  A high level of coincidence will skew the size distribution and concentration 

reported by APS.  This is the most likely cause of the large discrepancy between the normalized 

size distributions for particle diameters between ~0.5 and 0.7 μm, shown in Fig. 5-17. 

The remaining sources of error all relate to the measurement and modeling of the 

polarization ratio.  The fit between the measured polarization ratios, and the modeled polarization 

ratios using the parameters shown in Table 5-4, are shown in Fig. 5-18.  The refractive index of 

the fog fluid is not supplied by the manufacture, but the main ingredient listed on the MSDS sheet 

is mineral oil.  A refractive index of 1.47-i0.001 was used in the inversion algorithm for all three 

wavelengths based on the refractive index information that could be found for mineral oil 

(Verkouteren, 2010).  In reality, the complex refractive index will vary as a function of 
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wavelength, as shown in Fig. 5-19, with the shorter wavelengths having higher real and 

imaginary refractive indices.   

 

 
Figure 5-18: Comparison between measured polarization ratio and model polarization ratio using 
particle size distribution retrieved by the two-variable genetic algorithm for dataset #1through #4. 
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Figure 5-19: Real refractive index for mineral oil as a function of wavelength (Verkouteren, 
2010). 

 

The size distribution retrieved by the genetic algorithm was used to explore the squared 

error fit between the measured and modeled polarization ratio as the complex refractive index 

varies.  Figure 5-20 shows the fitness (inverse of the squared error between the measured and 

modeled polarization ratio) of the retrieved size distribution as a function of real and imaginary 

refractive index for dataset #2.  The pre-calculated scattering tables generated for the genetic 

algorithm were used to perform this grid search, therefore the real part of the refractive index 

varies from 1.43 to 1.53 by 0.005 and the imaginary part of the refractive index assumes values of 

{0.1, 0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001, and 0}.  Fig. 5-20 confirms that a better fit 

between the measured and modeled polarization ratio is achieved when the complex refractive 

index varies for each wavelength. 
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Figure 5-20: Fitness (1/squared error) for modeled and measured polarization ratio for dataset #2 
using lognormal size distribution retrieved by genetic algorithm (Table 5-4) as a function of 
complex refractive index. 
 

A grid search indicates that the best match between measured and modeled polarization 

ratios for dataset #3 occurs when using the refractive index of 1.535 + i0.05 at 407 nm, and 1.515 

+ i0.05 at 532 nm and 650 nm.  A summary of the complex refractive indices that produce the 

lowest squared error for each dataset is summarized in Table 5-5.  These real refractive indices 

are higher than expected based on the measured indices for mineral oil shown in Fig. 5-19.  The 

higher refractive indices could be a result of the other ingredients in the fog fluid, or that a 

407 nm

532 nm

650 nm

1/squared error 
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heavier grade of mineral oil was used in the fog fluid than was used for the measurements in 

Fig. 5-19.  The best-fit refractive indices vary slightly between datasets at each wavelength, and is 

probably a result of the resolution of the grid search and the errors in the measured polarizations 

ratios introduced by the background reflections.  If this grid search were repeated using finer grid 

spacing for the real and imaginary parts of the refractive index, it is likely that the variation in 

retrieved indices for the four datasets will be much reduced.  This would require the computation 

of additional scattering intensity look-up tables.   

Table 5-5: Summary of complex refractive indices retrieved by the grid search for dataset #3. 

 rg  σg 
NT nre + inim  

407 nm 
nre + inim 
532 nm 

nre + inim 
650 nm 

Dataset #1 0.23 μm 1.30 10,561 #/cm3 1.525 + i0.05 1.505 + i0.05 1.505 + i0.05
Dataset #2 0.23 μm 1.29 10,790 #/cm3 1.535 + i0.05 1.515 + i0.05 1.515 + i0.05
Dataset #3 0.20 μm 1.32 10,079 #/cm3 1.520 + i0.05 1.510 + i0.05 1.510 + i0.05
Dataset #4 0.21 μm 1.34 9,153 #/cm3 1.535 + i0.05 1.515 + i0.05 1.515 +i0.05 

 
 

A comparison between the measured and modeled polarization ratios using the retrieved 

refractive indices and the lognormal size distribution for dataset #3 is shown in Fig. 5-21.  The 

complex refractive indices retrieved by the grid search definitely improve the fit between the 

polarization ratios, but there is still a noticeable offset between the measured and modeled curves.  

This offset is most likely a result of the error introduced by the background reflections, 

particularly in the scattering angle range of 150 to 170 degrees.  Figure 5-22 shows an example of 

what the measured polarization ratios would probably look like if the background reflections 

were not present in the scattering data. 
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Figure 5-21: Comparison of measured polarization ratios (x) to modeled polarization ratios using 
a fixed refractive index of 1.47 + i0.001 for all wavelengths (dashed lines) and modeled 
polarization ratios using refractive index retrieved from grid search (solid lines) for dataset #3. 

 

 
Figure 5-22: Example of possible polarization ratios without errors introduced by background 
reflections.  
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The variation in retardance of the polarization beamsplitter as a function of wavelength 

will also contribute some error to the fit between the measured and modeled polarization ratios.  

The model is assuming that the incident light is polarized perfectly parallel and perpendicular to 

the scattering plane for all wavelengths.  In reality, there is a slight deviation away from parallel 

and perpendicular polarizations with respect to the scatter plane, particularly for the 407 nm 

wavelength.  Figure 5-23 shows calculated polarization ratios at the three wavelengths that have 

been calculated assuming a perfect retardance of 0.5 for all wavelengths (solid lines) and the 

polarization ratios calculated using the polarization retardances reported in the beamsplitter 

datasheet (see Fig. 4-2).  The curves are calculated using the variable-complex refractive index 

results for dataset #3 that are tabulated in Table 5-5.  The variance in retardation causes a shift in 

the 407 nm polarization ratio, and virtually no change in the 532 nm and 650 nm polarization 

ratios, as shown in Fig. 5-23.  The error introduced by this slight offset is dominated by the error 

introduced into the measured polarization ratio by the reflections from the plastic.    

 
Figure 5-23: Effect of variation in polarization retardance as a function of wavelength using 
retrieved parameters for dataset #3 in Table 5-5.  
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5.3 Vibrating Orifice Aerosol Generator 

TSI’s Vibrating Orifice Aerosol Generator (model 3450) creates highly monodisperse 

aerosol size distributions using a voltage controlled vibrating orifice.  A syringe pump feeds a 

liquid solution through a small orifice, and the vibration breaks the stream into uniform droplets. 

The droplet stream passes through a drying column, which prevents the droplets from coagulating 

and evaporates any volatile portion of the droplets. The VOAG generates primary droplets in the 

21- to 48-micrometer range using a standard, interchangeable set of 10- and 20-micrometer 

nominal diameter orifices.  The final diameter of the particle produced by the VOAG is calculated 

as, 
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where Q is the liquid flow rate in mL/sec, f is the oscillation frequency in Hz, and C is the 

volumetric concentration of the nonvolatile portion of the solution (VOAG manual).  The solution 

mixture of volatile and non-volatile components used to generate the droplets determines the 

amount of evaporation and the ultimate particle size. 

5.3.1 Producing monodisperse particles 

A solution of ethanol alcohol and oleic acid is mixed to produce monodisperse particle size 

distributions with median diameters of five microns. The VOAG uses a liquid feed rate of 0.16 

mL/min and an oscillation frequency of 67 kHz, to produce primary droplet diameters of 42.36 

μm.  Five micron particles are desired from a 42.36 μm primary droplet, requiring a nonvolatile 

volumetric concentration of (5/42.36)3, which gives an ethanol to oleic acid mixing ratio of 

roughly 500:1.  Five VOAGs were simultaneously running in the aerosol tunnel, producing 
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5*67,000=335,000 particles every second.  The expected concentration of particles in the wind 

tunnel can be calculated using the total number of particles produced per second (335,000), the 

wind speed (2  km/hr), the cross-sectional area of the test tunnel (~3 m x 3.7 m), and the transport 

efficiency (~30%).    
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 The total concentration of the oleic acid droplets as measured by the APS is shown in 

Fig. 5-24.  The blue box indicates the time of measurements for an analyzed dataset and the 

corresponding APS size distribution for the measurement timeframe is shown in Fig. 5-25. 

 
Figure 5-24: Concentration of 5 µm oleic acid droplets as measured by the APS on 23 November.  
Squares and triangles indicate data images acquired by the two cameras and the blue box 
indicates the dataset analyzed for this work. 
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Figure 5-25: Normalized particle size distribution measured by the APS during the collection of 
the analyzed datasets. 

5.3.2 Image processing techniques 

The low concentrations of the oleic acid particles requires integration times on the order 

of half a minute to several minutes for the CCD cameras to collect sufficient signal.  Long 

integration requires an extremely low background light, and steps were taken to minimize stray 

light in the aerosol tunnel.  Black plastic was laid along the top and covered both sides of the 

transparent window of the HETS section of the aerosol tunnel, and all lights in the work bay 

where the tunnel is located were turned off.  The inside wall of the aerosol tunnel that would be in 

the field of view of the CCDs was also covered in black plastic to hopefully minimize stray 

reflections off of this back wall.  Unfortunately, this black plastic added an interesting complexity 

to the analysis of the scattering data by introducing ‘rippled’ reflections on the hanging folds of 

the plastic directly behind the laser beams, see Fig. 5-26.  The circular rings seen in the scattering 
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image in Fig. 5-26a are caused by a circular scratch on the grating and add additional error into 

the measured scattering phase functions. 

 

Figure 5-26: Scattering images for oleic acid droplets (a) Camera 1 and (b) Camera 2. 

 

The dark count images are subtracted from the ‘raw’ images of the frames for 

polarization perpendicular and parallel to the scattering plane (i.e. the plane containing the laser 

beam and the imager).  Figure 5-27b displays the resulting dark-count-subtracted image for an 

image of the scattering from the 5 μm particles.  Notice that folds in the black plastic on the back 

wall can clearly be seen in the background of the image, as well as reflections from the metal 

plates that were along the floor of the tunnel.    By imaging through the diffracting grating, the 

wavelength dependent scattering data has been unfortunately spread across these background 

reflections.  An image interpolation technique is used to attempt to minimize the effect of the 

reflections in the scattering data.  The rows containing the scattering data are removed from the 

image and an image processing algorithm approach employing neighbor least-squares 

optimization is used to interpolate the background.  The interpolated background image (Fig. 5-

27d) is subtracted from the original dark-count-subtracted image (Fig. 5-27b) after adding a 

constant offset to the whole image to eliminate ‘false’ zeros.  The extraction algorithm uses this 



115 

 

final ‘processed’ image which attempts to retain all of the scattering information and hopefully 

minimum reflection signal.   

 

Figure 5-27: (a) ‘raw’ scattering image (b) dark-count subtraction (c) removed scattering from 
image (d) interpolated background image. 

 

This technique did remove the ripples from the plastic, but it also eliminated scattering 

information from the images.  Fig. 5-28 is zoomed-in view of the interpolated background image 

and shows the blurred intensity that is spread across the length of the image where the three 

diffracted beams are located.  Subtracting this ‘blurred’ intensity from the raw scattering images 

completely changes the shape and magnitude of the polarization ratio.  Unfortunately, the 

background reflections cannot be removed from the data, without also altering the scattering 

intensities generated by the particles.  While this is discouraging, it does not mean that the 

Camera 2 Horizontal Polarized 'Raw' Image Camera2 Horizontal Image after Background Subtraction

(a) (b) 

(c) (d) 
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collected data is completely worthless.  These measurements demonstrate the need for future 

experiments to use a flat black absorption background.   

 
Figure 5-28: Interpolated background image showing blurring of specular reflections. 

5.3.3 Polarization ratios 

The entire collected range of scattering angles can not be inverted by the algorithm 

because of the reflections off of the plastic; however, there should still be valuable scattering 

information in the angles that are not corrupted by background reflections.  The normalized size 

distribution measured by the APS (Fig. 5-25) is converted to a particle size distribution by 

dividing the normalized concentration by the logarithm of the bin widths and the aerodynamic 

diameter is converted to particle diameter by dividing by the square root of the density of the 

oleic acid, 0.895.  The particle size distribution is shown in Fig. 5-29 with a ‘best-fit’ lognormal 

size distribution that will be used to calculate the model polarization ratio. 
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Figure 5-29: Number density size distribution measured by APS for analyzed dataset and ‘best-
fit’ lognormal size distribution.   
 
 

Figure 5-30 shows the measured polarization ratios for dataset #1 and the theoretical 

polarization ratio calculated from the APS measured size distribution (5.4 μm, 1.05) at a 

concentration of 0.03 particles/cm3.  When comparing the measured polarization ratios for 

dataset #1 to the calculated polarization ratios it becomes clear that the reflections from the black 

plastic are corrupting the polarization ratios at the scattering angles that contain the most distinct 

scattering patterns for the lognormal size distribution of oleic acid particles.  The general shape of 

the measured polarization ratios between the angles of ~165 and 170 degrees is similar to the 

shape observed in the calculated polarization ratios using the APS size distribution, but also could 

be a result of the background reflections.  One significant difference between the theoretical and 

measured polarization ratios is the offset observed as a shift of the 407 nm measured polarization 

ratio from the 532 nm, and 650 nm measured polarization ratios.  Following this clue, we suspect 

a second particle mode, a smaller size aerosol contributing to the signal.  The genetic algorithm 



118 

 

was used to see if a size distribution could be found to explain this offset between the measured 

polarization ratios. 

 
Figure 5-30: Measured polarization ratios for dataset #1 compared with theoretical polarization 
ratio for lognormal size distribution (dg = 5.4 μm, σg = 1.05) and concentration of 0.03 particles 
per cm3. 
 
 

The genetic algorithm is used to retrieve the geometric mean radius, geometric standard 

deviation, and concentration of the first mode of a bimodal lognormal particle size distribution 

that produces the lowest squared error between the measured and modeled polarization ratios.  

The second mode lognormal distribution is held constant within the genetic algorithm, with a 

geometric mean diameter of 5.4 μm, a geometric standard deviation of 1.01, and a concentration 

of 0.03 particles/cm3.  A refractive index of 1.46 + i0 is used for all three wavelengths in order to 

increase the speed of convergence of the algorithm.  Results from the genetic algorithm inversion, 

Dataset #1

LogN (dg =5.4 μm, σg = 1.05) 
N5μm= 0.03 #/cm3 
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summarized in Table 5-6, indicate that the offset between the polarization ratio curves is most 

likely caused by a large number density (> 104 #/cm3)  of ultrafine particles (~0.18 µm diameter).   

Table 5-6: Results for five genetic algorithm inversions of dataset #1.  

Geometric 
mean 

diameter 
(μm) 

Geometric 
standard 
deviation 

Concentration 
(#/cm3) 

Geometric 
mean radius 

(μm) 

Geometric 
standard 
deviation 

Concentration 
(#/cm3) 

0.16 1.35 3 x 104 5.4 1.05 0.03 
0.22 1.23 1 x 104 5.4 1.05 0.03 
0.18 1.3 1 x 104 5.4 1.05 0.03 

0.16 1.34 3 x 104 5.4 1.05 0.03 

0.18 1.28 2 x 104 5.4 1.05 0.03 

   

Subsequent discussions with the director of the EPA aerosol chamber, Russell Weiner, 

revealed that there are a significant number of smaller particles produced by the VOAGs during 

the generation of the larger oleic acid droplets.  These smaller particles are produced by the 

‘breaking’ of the stream of oleic acid into the dynamic air flow in the tunnel (Chigier and Reitz, 

1995).   Figure 5-31 is a picture of an operating vibrating orifice and it is possible, with some 

difficulty, to see the ‘haze’ created by the small break-off particles around the stream of larger 

droplets. 

 

Figure 5-31: Picture of operating vibrating orifice from VOAG datasheet (TSI Model 3450 
VOAG datasheet). ‘Haze’ around particle stream could be sub-micron particles. 

 

A bimodal size distribution retrieved by the genetic algorithm is used to calculate 

polarization ratios at the three wavelengths of 407 nm, 532 nm, and 650 nm, which are shown in 
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Fig. 5-32.  The offset that is seen between the blue wavelength and the other two wavelengths in 

the measured polarization ratio for dataset #1 is now included in the modeled polarization ratio, 

indicating that the measured offset is a result of a large concentration of these sub-micron ‘break-

off’ particles.  

 
Figure 5-32: Polarization ratio for bimodal lognormal size distribution (dg,1=0.18 μm, σg,1=1.3, 
NT1=1 x 104 #/cm3 and dg,2 =5.4 μm, σg,2 1.05, NT2=0.03 #/cm3). 
 

 The large number of sub-micron particles that are required to create the offset between 

the 407 nm polarization ratio and the 532 nm and 650 nm polarization ratios dampen the 

scattering signature of the five micron particles in the modeled polarization ratios.  This 

knowledge leads to the conclusion that the patterns observed in the measured polarization ratios 

from 165 to 170 degrees is most likely caused by background reflections, and not the oleic acid 

droplets.  The scattering signature created by the oleic acid droplets are dominated by the strong 

reflections off of the plastic, and dampened by the scattering from the sub-micron ‘break-off’ 

particles.  
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5.4 Conclusions 

 The scattering measurements collected in the EPA aerosol wind tunnel provide a unique 

opportunity to assess the performance of the multiwavelength-multistatic system and the genetic 

algorithm inversion procedure.  The retrieval of the single lognormal size distributions for the 

case of the MDG fog that so closely matched the size distributions measured by the aerodynamic 

particle sizer adds a high level of confidence to the technique.  The inversion algorithm searched 

an extremely large solution space and retrieved values within reasonable measurement errors of 

the point sensors systems, considering the fact that the instruments were operated well outside 

their recommended concentration range.  The ability of the technique to retrieve real refractive 

indices for the scattering volume, and imaginary indices within certain bounds, is an extreme 

advantage over the point-measurement systems.  The sensitivity of the polarization ratio to the 

concentration of particles has been explored as a result of these measurements, and the usefulness 

of extinction measurements and/or absolute magnitude measurements of the scattering phase 

functions to help quantify concentration has been discussed.           

 Originally, the monodisperse particle distributions produced by the VOAG were to be 

used as a solid measure of the accuracy and reliability of the multiwavelength-multistatic 

technique and the developed inversion algorithm.  The low concentration and large size of the 

oleic acid droplets in relation to the laser wavelengths would be a non-trivial test of the 

techniques limits.  Unfortunately, the presence of the background reflections in the oleic acid data 

raises some questions when determining the ‘goodness’ of fit between the modeled and measured 

polarization ratio, because it is difficult to say with certainty which scattering features are results 

of the particles and which are the background reflections.  Additionally, the presence of the 

‘break-off’ particles, which are too small for the APS to detect, also adds uncertainty into the 

ground-truth particle size distribution, which was originally counted on to be highly 
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monodisperse and completely characterized by the in situ point sensor measurements.  For these 

reasons, the oleic acid scattering measurements can not quite be the exclamation point for the 

multiwavelength-multistatic technique that was originally hoped.  That being said, the technique 

did reveal the presence of the ultrafine particles, prior to confirming their existence with the 

director of the wind tunnel, and which were completely undetected by the APS.  There is hope of 

repeating this measurement in the not-so-distant future in order to further build upon the insight 

and confidence in the technique that are results of this first set of measurements.  This new level 

of understanding of the successes and limitations of the system can now be intelligently and 

confidently applied to the dynamic and complex place that is our atmosphere.  
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Chapter 6 
 

Atmospheric Aerosol Measurements 

The experimental method and inversion algorithms explored in the previous chapters are 

used to infer characteristics of atmospheric aerosols.  A North Carolina State University 

astronomy site was used as the field site for making the multiwavelength-multistatic aerosol 

scattering measurements.  The astronomy site is located in the middle of horse pastures and there 

is very little background light pollution making it a nice location for conducting laser scattering 

measurements.  The transmitter was set on a low table, about half of a meter off of the ground, 

with the lasers propagating down the length of a shallow valley in the middle of the horse pasture.  

The path was terminated by a target board resting in the back of a pickup truck (the pasture 

sloped downwards) at a distance of approximately 100 meters.  A rope with dangling wires 

spaced at five meters apart was stretched between two poles along the entire length of the path to 

aid in determining the angles associated with each pixel in the scattering images.  A weather 

station that recorded temperature, dew point, and humidity was placed about 30 meters away 

from the transmitter.  A condensation particle counter (CPC), TSI model 3007, was placed on the 

ground under the path of the laser beams, at about three meters distance from the transmitter.  It 

was placed in this location due to the length of the power cord, and to keep the lights from the 

instrument display out of the field of view of the two cameras.  Two cameras were placed at 

positions to collect scattering signals from overlapping volumes for two overlapping ranges of 

backscattering angles.   

One difficulty encountered during the outdoor tests was the condensation of water onto 

the transmitter and receiver optics.  Figure 6-1 shows the effects of condensation beginning on the 

diffraction grating.  A space heater was then kept constantly blowing on the transmitter optics to 
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keep them dry throughout the evening and early morning and a handheld hair dryer was used 

intermittently to dry the camera lenses and diffraction gratings (approximately every 2-3 

minutes).  The use of the heater and blow dryer minimized the effect of the condensation on the 

optical elements, but the condensation would occasionally creep into the scattering data.  Datasets 

corrupted by condensation are identified by the dramatic fluctuations in the 650 nm polarization 

ratio as shown in Figs. 6-1 and 6-2.  

 
Figure 6-1: Scattering image collected using 600 lines/mm diffraction grating showing 
condensation on the inside of the grating (streaks inside white oval). 

 
Figure 6-2: Polarization ratio of scattering data altered by condensation collecting on the inside of 
the diffraction grating. 
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The night of 20/21 November presented a continuous fluctuation of patchy fog that 

would progress up the slope of the small valley towards the transmitter.  The quickly moving fog 

made it extremely difficult to acquire scattering images for both incident polarization ratios 

before the concentration of the fog had changed.  Future generations of the multistatic system 

should automate the rotation of the transmitter polarization and the acquisition of data images to 

eliminate this difficulty from the data collection process.  This concept is discussed further in 

Chapter 7.   Analysis of two polarization ratios measured during two short, relatively stable 

periods of aerosol concentration collected on this night are presented.  The temperature, dew 

point, and humidity for the night of 20/21 November are shown in Fig. 6-3.  Scattering 

measurements are collected from approximately midnight, which is about the time that the air 

temperature reached dew point temperature, and fog was observed. The patchy fog continued 

until about to 2 AM, with the temperature dropping roughly two degrees throughout the time of 

the scattering measurements.  The particle concentration measured by the CPC throughout the 

course of the measurements is shown in Fig. 6-4, where the approximate collection times of two 

selected datasets are marked with boxes.  The two datasets are roughly an hour apart, with the 

first dataset collected at 12:50 AM and the second dataset at 1:45 AM.   Notice that the 

measurements are made during periods of brief, relatively stable particle concentrations, with 

each data point in the graph corresponding to a one minute-averaged concentration measured by 

the CPC.  The weather station recorded no wind throughout the evening, which makes it difficult 

to explain the patchiness of the observed fog and the large oscillations of the CPC concentration 

measurements.   The analysis of two datasets collected on the night of 20/21 November are 

presented in the next section to explore the retrieval process of the microphysical properties of 

atmospheric aerosols from multiwavelength-multistatic data.  
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Figure 6-3: Temperature, dew point, and relative humidity for night of 20/21 November.  Blue 
lines show times of data collection for datasets analyzed for this work. 

 

 
  Figure 6-4: CPC concentration for night of 20/21 November with ±20% (dotted lines).  Blue 
boxes indicate times of data collection for analyzed datasets for this work. 
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6.1 Data Processing 

The first analyzed dataset from the evening of 20/21 November was collected at 

12:50 AM, when a patchy light fog could be seen along the length of the laser path.  The 

measured scattering intensities for the incident parallel and perpendicular polarizations are shown 

in Fig. 6-5, and the corresponding polarization ratios are shown in Fig. 6-6.  Examination of Fig. 

6-5 reveals a cyclic pattern in the measured data that is not typical of the smooth sinusoidal 

patterns that are characteristic of Mie scattering.  These cyclic features in the scattering intensities 

appear in the polarization ratios as sharp ‘drop-offs’ in magnitude, which are not consistent with 

the polarization ratios obtained from fog by Stevens (1996, Chapter 5),  Novitsky (2002, Chapter 

6), or Park (2008, Chapter 6).     

 
Figure 6-5: Unfiltered measured scattering intensities for fog at 12:50 AM, 20/21 November.  The 
scattering intensities for the 407 nm and 532 nm have been given constant biases to separate the 
curves from each other.   



128 

 

 
Figure 6-6: Unfiltered polarization ratios for fog at 12:50 AM, 20/21 November. 

 

The data processing procedure is re-examined to determine if the cyclic patterns observed 

in the scattering intensities can be explained by the integration routines.  The data processing 

algorithm locates the maximum intensity for each wavelength in each column and then adds the 

pixels above and below this maximum intensity pixel until the value of the pixels drops below a 

certain percentage of the maximum pixel count.  The value of 80% was used to form the 

measured scattering intensities shown in Figure 6-5 and the polarization ratios shown in Fig. 6-6.  

The data collected November 21st at 12:50 AM was reprocessed using cut-offs of 50%, 75%, and 

90% to determine the effect of the integration cut-off in the data processing routine.  Plotted 

below in Figs 6-7 through 6-9 are the unfiltered scattering intensities calculated using the 

specified intensity percentage cut-off in the data processing algorithm and the corresponding 

polarization ratios formed from the ratio of the intensities after a 10-point moving average smooth 

had been applied.      
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Figure 6-7: Scattering intensities and polarization ratios for data collected 20/21 November at 
12:50 AM when using an integration cut-off of 50% of the maximum pixel value. 
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Figure 6-8: Scattering intensities and polarization ratios for data collected 20/21 November at 
12:50 AM when using an integration cut-off of 75% of the maximum pixel value. 
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Figure 6-9: Scattering intensities and polarization ratios for data collected 20/21 November at 
12:50 AM when using an integration cut-off of 90% of the maximum pixel value. 

 
 Inspection of the scattering intensities in Figs 6-7 through 6-9 reveals that the cyclic 

pattern is more pronounced when integrating fewer rows to obtain the scattering intensities as a 

function of angle.  The transitions at the bottom of the ripples are too sharp to be explained by 

scattering and they appear to occur at angles where the imaged beams are crossing multiple rows 

of the CCD array.  The curvature of the imaged beams causes the scattered intensities to cross 
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numerous rows of the CCD array, especially on the right side of the image when the scattered 

intensity is being collected from longer distances, as shown in Fig. 6-10.   

 
Figure 6-10: Location of diffracted beams on the CCD array 

 

 The rippled effect is intensified when fewer rows are used in the integration process due 

to the discrete nature of the data collected by the CCD array. A cross section of the scattered 

intensities for the 532 nm wavelength for CCD column 400 is shown in Fig. 6-11.   

 
Figure 6-11: Depiction of integration of rows to produce scattering intensity as a function of 
column 
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The red line is the threshold that the data processing algorithm uses to determine how many rows 

to add for each column.  The gray box shows the number of rows that are added to produce a total 

scattering intensity for 532 nm at that particular scattering angle.  In this case, the pixel whose 

value is right at the threshold level is included, but one can imagine if the pixel level was just a 

little bit less than it would get excluded from the integration and drop the value of the integrated 

scattering intensity.  These drop-offs would be less pronounced if there was a higher sampling 

resolution of the cross-section of the scattered laser beams.  In the higher resolution case, the 

inclusion or exclusion of a row would have less of an impact on the total integrated scattering 

intensity.  One way that this higher resolution might be accomplished would be to spread the 

beam using a beam expander.  This would distribute the scattered signal across more rows of the 

CCD array, and the intensity differences between adjacent rows in a column would be less, 

causing each row to have less of an impact on the overall integrated intensity.  Expanding the 

beam would have the added advantage of interrogating a larger volume of aerosols, increasing the 

collection of scattering signals from particles that are present in very low concentrations.  

 The imager used to collect the data is an interline CCD array, meaning that each 

photodetector in the CCD array has its own transfer circuitry directly next to it, as shown in Fig. 

6-12.  This transfer circuitry significantly speeds up the transfer rate of data from the CCD array, 

but also has the effect of creating small ‘dead space’ between adjacent pixels in the array.  

Microlenses are used to focus most of the light that falls onto each pixel into the photodetectors, 

as shown in Fig. 6-12.  The microlenses vastly improve the collection efficiency of the CCD 

array, but a small percentage of the light is still lost.  The intensity of the scattered beams crossing 

from one row of pixels to the next causes the efficiency of the microlenses positioned above the 

photodiodes to change, contributing to the ripples in the scattering intensities and the polarization 

ratios.    
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Figure 6-12: Interline CCD architecture (Spring, Fellers, and Davidson, 2000, Figs. 7 and 8). 

 

  Figure 6-13 shows the changes to the polarization ratio formed from the measured 

scattering intensities at 650 nm as the integration threshold level is varied; more rows are 

included in the integration process as the percentage increases.  This figure helps explain the 

failure of the model to fit all of the ripples in the analyzed datasets presented in the next section.  

These ripples are essentially noise, and the fact that the inversion algorithm retrieves trimodal 

size distributions in the presence of these ripples, speaks to the robustness of the algorithm.  The 

ranges of the inversion variables presented in the next section would be considerably reduced if 

the erroneous ripples could be removed from the polarization ratios. 
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Figure 6-13:  Polarization ratio for 650 nm as a function of the number of rows added to calculate 
the scattering intensity for each scattering angle. The percentage values are the thresholds used in 
the data processing algorithm to select the number of rows for each wavelength and scattering 
angle. 

6.2 Data Inversion 

The first analyzed dataset from the evening of 20/21 November was collected at 12:50 

AM, when a patchy light fog could be seen along the length of the laser path.  The data was 

collected using 10 second integration times with the 300 lines/mm grating, and with 

approximately one minute difference between the beginning of the parallel and the perpendicular 

scattering data collection periods.  The measured scattering intensities calculated using the 90% 

integration point to minimize the ripples introduced by the interline CCD structure, as discussed 

in the previous section, are shown in Fig. 6-14.  Unfiltered scattering intensities from a second 

dataset collected approximately an hour later, between 1:43 and 1:45 AM, are shown in Fig. 6-15.  

The polarization ratios for the two datasets, after applying a 10-point moving average smooth to 

the collected intensities, are shown in Fig 6-16 for comparison.   
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Figure 6-14: Unfiltered scattering intensities for fog at 12:50 AM, 20/21 November.   

 
Figure 6-15: Unfiltered measured scattering intensities for fog at 1:45 AM, 20/21 November.  
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Figure 6-16: Time sequence of polarization ratios collected at two times the evening of 20/21 
November. 

 

The genetic algorithm is used to retrieve trimodal lognormal size distributions from the 

measured data sets. A fixed refractive index is used for all three wavelengths within the algorithm 

to drastically improve the speed of convergence, as discussed in Chapter 3.  The refractive index 

used for the genetic algorithm inversions of the outdoor scattering data is selected based on the 

squared error produced by multiple runs of the algorithm on the dataset collected on 

20/21 November at 12:50 AM.  The algorithm is run repetitively using fixed real refractive 

1:45 AM 

12:50 AM
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indices from 1.33 to 1.39 by steps of 0.001, and the imaginary refractive index is allowed to 

assume a discrete value in the set {0, 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05}.  These ranges 

were selected based on models presented by Shettle and Fenn (1979) for the refractive index of 

urban and rural aerosols at high relative humidities.  A small section of an extensive table of 

refractive indices for atmospheric aerosols as a function of wavelength and relative humidity 

presented in the report by Shettle and Fenn (1979) is reproduced in Table 6-1 at the wavelengths 

and relative humidities of interest for the fog measurements.   The average lowest squared error 

between the modeled and measured polarization ratios produced by the algorithm is used to select 

the refractive index of 1.35 + i0.001 to use for subsequent inversions of the fog data.   

Table 6-1: Reconstructed from Shettle and Fenn (1979, Table 4 and Table 6) showing 
atmospheric aerosol refractive index used in their model as a function of wavelength and relative 
humidity.  

 Urban Aerosols Rural Aerosols 
Wavelength 

(μm) 80% RH 90% RH 99% RH 80% RH 90% RH 99% RH 

0.4000 1.416 
+0.0316 

1.382 
+i0.0176 

1.344 
+i0.00199 

1.431 
+i0.00286

1.395 
+i0.00174 

1.348 
+i0.000498 

0.5500 1.412+ 
i0.0305 

1.377 
+i0.0170 

1.338 
+i0.00187 

1.428 
+i0.00319

1.391 
+i0.00194 

1.343 
+i0.000323 

0.6328 1.411 
+i0.0299 

1.376 
+i0.0166 

1.337 
+i0.00178 

1.420 
+i0.00319

1.390 
+i0.00194 

1.342 
+i0.000323 

 

The trimodal lognormal size distributions retrieved by the genetic algorithm for the 

datasets collected the night of 20/21 November are shown in Table 6-2.  The retrieved size 

distributions that produce the lowest squared error between the measured and modeled 

polarization ratios for each dataset are indicated by an asterisk in Table 6-2.  These retrieved size 

distributions are used as the starting point for a comprehensive analysis that is done by adjusting 

each of the inversion parameters and observing the effects on the fit between the model and 

measured data.  The modeled polarization ratios for the dataset collected on 20/21 November at 

12:50 AM are compared to the measured polarization ratios in Fig 6-17.   The trimodal lognormal 
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size distribution retrieved by the genetic algorithm in Table 6-2 is used to calculate the modeled 

polarization ratios and is plotted in the bottom half of Fig. 6-17.    

Table 6-2: Inversion results from genetic algorithm for datasets collected the evening of 
20/21 November.  

Minimum 
SE 

rg1 
(μm) 

σg1 NT1 
(#/cm3) 

rg2 
(μm) 

σg2 NT2 
(#/cm3) 

rg3 
(μm) 

σg3 NT3 
(#/cm3) 

20/21 November  
12:50 AM 

0.603 0.05 2.02 12600 0.560 1.25 23 13.3 2.78 0.0141 
*0.596 0.06 1.99 14100 0.60 1.15 25 14.3 3.9 0.0141 

20/21 November 
1:45 AM 

0.729 0.141 1.8 13200 1.37 2.34 17.8 - - - 
*0.726 0.131 1.86 11600 1.2 2.65 15.8 - - - 

 

 
Figure 6-17: (a) Inverted size distribution and (b) modeled (dashed lines) polarization ratios from 
genetic algorithm using fixed refractive index of 1.35 + i0.001 compared to measured 
polarization ratios (solid lines) for dataset collected at 12:50 AM, 20/21 November. 

rg,1=0.06 μm, σg,1=1.99, NT,1=14100 #/cm3

rg,2=0.60 μm, σg,2=1.15, NT,2=25 #/cm3 
rg,3=13.3 μm, σg,3=2.5, NT,3=0.014 #/cm3 
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A fixed refractive index was used for all three wavelengths to speed the convergence of 

the inversion algorithm, but in reality the refractive index of the aerosols will vary with 

wavelength.  The refractive index is adjusted independently for each wavelength through visual 

analysis to optimize the fit for each wavelength between the measured and modeled polarization 

ratio.  Higher real refractive indices tend to lift the modeled polarization ratio curves, while 

higher imaginary refractive indices flatten the gradient of each curve and decrease the magnitude 

of the peaks and troughs in the polarization ratios.  The complex refractive indices that produce 

the best fit for each wavelength are: 1.36 + i0.001 for 407 nm, and 1.35 + i0.001 for 532 nm and 

for 650 nm.  Minor adjustments are made to each of the parameters of the trimodal size 

distribution retrieved by the algorithm to optimize the average fit between the measured and 

modeled polarization ratios using the varied refractive indices for each wavelength.  The 

concentrations of the first and second modes are slightly lowered and the third mode that was 

retrieved by the genetic algorithm is removed from the size distribution.  The third mode was 

removed because the dip in the polarization ratio that resulted in the third mode is thought to be a 

result of shifting concentrations between the two polarization images.  There was approximately 

one minute between the collection of the parallel scattered intensity and the perpendicular 

scattered intensity in order to accommodate the flipping of the waveplate and a quick drying of 

the diffraction gratings.  The dip is located at the exact same angular location for all three 

wavelengths which could not be recreated in the calculated polarization ratios. The third mode is 

removed from the size distribution with little or no detriment to the over-all average fit of the 

polarization ratios across the range of angles from 145 to 165 degrees. The adjusted fit using a 

varying refractive index as a function of wavelength and a bimodal lognormal size distribution is 

shown in Fig. 6-18 with the corresponding bimodal size distribution.  A decent average fit over 

the angle range is achieved for each wavelength.  There are some discrepancies between the 
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modeled and measured polarization ratios that appear to be wavelength dependent.  The 532 nm 

model shows a good fit to the measured data throughout the whole range, while the 407 nm and 

650 nm model deviates noticeably from the data in certain spots.  The probable cause for these 

deviations are shifting concentrations of aerosols between the acquired parallel and perpendicular 

polarized scattering images.   

 
Figure 6-18: (a) Adjusted size distribution to produce the (b) best average fit between modeled 
(dashed lines) and measured (solid lines) polarization ratios for all wavelengths and angles using 
variable refractive index as a function of wavelength for dataset collected at 12:50 AM, 
20/21November.   
 

rg,1=0.06 μm, σg,1=1.99, NT,1=10,000 #/cm3

rg,2=0.60 μm, σg,2=1.15, NT,2=25 #/cm3 

n(407 nm) = 1.36 + i0.001 
n(532 nm) = 1.35 + i0.001 
n(650 nm) = 1.35 + i0.001
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In order to explore the range of parameters that produce a decent fit for this dataset, each 

lognormal parameter is slowly varied while the others are held constant until the modeled 

polarization ratio can no longer be considered to fit the data.  The range of the refractive index is 

explored first by allowing the real part of the refractive index to vary for all three wavelengths to 

locate the upper and lower limits that still fit the measured data reasonably well.  Figure 6-19 

shows a comparison between the measured and modeled polarization ratios for two different sets 

of refractive indices: (a) shows the upper limits of 1.365 for 407 nm, and 1.355 for 532 nm and 

for 650nm, and (b) shows the lower limits of 1.350 for 407 nm, and 1.340 for 532 nm and 650 

nm.  The refractive indices are returned to their ‘optimized’ values and another parameter in the 

calculation of the modeled polarization ratios is varied. The modeled polarization ratios are 

monitored as the concentration, geometric mean radius, and geometric standard deviation of the 

lognormal distributions are varied, and a minimum and maximum value is retrieved for each 

parameter that produce a decent fit for all three wavelengths. While each parameter is varied, the 

other parameters remain fixed to the values shown in the first line of Table 6-3, which are also the 

parameters used to calculate the modeled polarization ratio in Fig. 6-18.   An example of this 

process is shown in Figure 6-20, which displays the polarization ratio comparisons for the 

maximum and minimum fine mode concentration values, NT,1, that can be considered a decent fit 

to the measured data.  The ranges established for each of the parameters are summarized in Table 

6-3 along with the optimized values that produced the best averaged fit.  The process is repeated 

for the second dataset collected the night of 20/21 November at 1:45 AM.  The process follows 

these steps: (1) the size distribution retrieved by the genetic algorithm is used to optimize the 

refractive index for each wavelength, (2) the parameters of the size distribution are varied to 

determine the range of values that produce a reasonable average fit, and (3) a comparison is made 

between the measured and modeled polarization ratios. 

 



143 

 

 
Figure 6-19: Comparison between the measured (solid lines) and modeled (dashed lines) 
polarization ratios for varying refractive indices for dataset collected at 12:50 AM, 
20/21November.  

 

  Figure 5-21 shows the optimized size distribution that produces the ‘best-fit’ between 

the measured and modeled polarization ratios for the dataset collected at 1:45AM, 

20/21November.  The refractive indices that produce the best fit to the measured data from 1:45 

AM are the same refractive indices that were retrieved from the previous dataset.  It was thought 

that the imaginary part of the refractive index would be less for the second dataset, as more water 

condensed on the background aerosols, but the modeled polarization ratio fits the data best with 

n(407 nm) = 1.365 + i0.001 
n(532 nm) = 1.355 + i0.001 
n(650 nm) = 1.355 + i0.001

n(407 nm) = 1.350 + i0.001 
n(532 nm) = 1.340 + i0.001 
n(650 nm) = 1.340 + i0.001
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the same imaginary index of 0.001, estimated to be within about ± 0.0005.  The ranges for each 

inversion variable for the second dataset are also summarized in Table 6-3.   

 
Figure 6-20: Comparison between the measured (solid lines) and modeled (dashed lines) 
polarization ratios for varying fine mode concentration, NT,1, for dataset collected at 12:50 AM, 
20/21 November. 
 
 
 
 
 
 
 

rg,1=0.06 μm, σg,1=1.99, NT,1=12,100 #/cm3

rg,2=0.60 μm, σg,2=1.15, NT,2=20 #/cm3 

rg,1=0.06 μm, σg,1=1.99, NT,1=8,000 #/cm3

rg,2=0.60 μm, σg,2=1.15, NT,2=20 #/cm3 
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Figure 6-21: (a) Adjusted size distribution to produce the (b) best average fit between modeled 
(dashed lines) and measured (solid lines) polarization ratios for all wavelengths and angles using 
variable refractive index as a function of wavelength for dataset collected at 1:45 AM, 20/21 
November. 
 

Table 6-3: Ranges of trimodal lognormal parameters using a refractive index of 1.36 + i0.001 for 
407 nm, and 1.35+ i0.001 for 532 nm and for 650 nm. 

rg1 
(μm) 

σg1 NT1 
(#/cm3) 

rg2 
(μm) 

σg2 NT2 
(#/cm3) 

rg3 
(μm) 

σg3 NT3 
(#/cm3) 

20/21 November, 12:45 AM 
*0.06 1.99 10,000 0.60 1.15 20 - - - 
0.055-
0.070 

1.95-
2.15 

8,000-
12,100 

0.595-
0.615 

1.145-
1.2 

18-22 - - - 

 20/21 November, 1:45 AM 
*0.16 1.8 11,600 1.20 2.5 23 - - - 
0.155-
0.165 

1.78-
1.82 

10,500-
12,500 

1.18-
1.22 

2.45-
2.55 

21-
24.5 

- - - 

rg,1=0.16 μm, σg,1=1.8,  
NT,1=11,600 #/cm3 

rg,2=1.20 μm, σg,2=2.5, 
 NT,2=23 #/cm3 

n(407 nm) =1.360 + i0.001 
n(532 nm) = 1.350 + i0.001 
n(650 nm) = 1.350 + i0.001
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Figure 6-22 shows a comparison between the two retrieved size distributions from the 

evening of 20/21 November, along with the integrated total number density for each dataset.  The 

number density is almost exactly the same for both size distributions, at ~11,690 particles/cm3.  

Review of the concentrations reported by the CPC for the time frame of the measurement (Fig. 6-

4) shows that the concentrations were also extremely similar, with the CPC reporting roughly 

9,100 particles/cm3 for both datasets.  The 11,690 particles/cm3 obtained from the multistatic 

measurements is slightly higher than the ±20% accuracy concentration of the CPC measurement.  

This difference is most likely due to the fact that the multistatic concentration is a path-averaged 

result from data collected on the aerosols farther down the valley than where the CPC was 

collecting point-measurements of the concentration.       

 
Figure 6-22: Comparison of retrieved size distributions for two datasets summarized in Table 6-3 
collected the night of 20/21 November. 

 
 

Total Number Density 
(.03 to 60 μm) 

12:50 AM – 11,691 particles/cm3 

1:45 AM – 11,697 particles/cm3 
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The temperature had dropped about one degree between the two analyzed datasets and 

the geometric mean radius of both lognormal modes grew larger over the hour between 

measurements.  The cooler temperature causes more water vapor to condense out of the air and 

form onto small fog droplets, which accounts for the increase in geometric mean radius for the 

second mode of the bimodal distribution.  The most probable cause of the increase in the first 

mode geometric mean radius is the uptake of water throughout the evening by background 

hygroscopic aerosols, most likely beginning with a nuclei of ammonium sulfate or inorganic 

material (Shettle and Fenn, 1979).   

The visibility range is defined as the path length when the minimum contrast for the eye 

reaches 2% at 550 nm (Measures, 1984).  The visibility range for each of the measurements can 

be calculated as (Measures, 1984),   

    

ext

S
α

9.3
=      (6-1) 

where αext is the extinction coefficient at 550 nm reported in inverse kilometers.  The extinction 

coefficient at 550 nm and the resulting visibility range for both datasets are reported in Table 6-4.  

The extinction coefficients are calculated using Mie code as weighted averages of monodisperse 

particle sizes in the range from 2 nm to 60 µm diameters. 

Table 6-4: Extinction coefficients and visibility range for size distributions obtained for datasets 
collected the evening of 20/21 November. 

550 nm 
αext 

(km-1) 

S 
(km) 

20/21 November, 12:45 AM 
0.3952 9.87 

20/21 November, 1:45 AM 
5.4454 0.72 

 

 The normalized size distributions retrieved from the multistatic data are compared to 

published results for dense radiation fog obtained in Albany, New York (Meyer et al, 1979).  The 
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normalized size distributions for the Albany fog were obtained using two Royco optical particle 

counters, and the visibility was obtained by measuring the ambient extinction using a xenon flash 

lamp.  The normalized particle size distributions shown in Fig. 6-23b were reported for a case of 

dense radiation fog, whereas the cases studied in this Chapter are more typical of a dense haze.  

The dense fog is created by the generation of a third mode, reported for the Albany fog, which did 

not occur on this night of measurements.  The comparison is made to highlight the similarities in 

the shape of the first two modes of our retrieved size distributions and the size distributions 

reported in the literature as conditions transition from high visibility to low visibility.  In both 

instances, the mean diameter and width of the second mode increased over the time of the 

measurements.  

 

Figure 6-23: Comparison of (a) retrieved normalized size distributions from Raleigh, North 
Carolina multistatic measurements to (b) published normalized size distributions for radiation fog 
in Albany, New York obtained using an optical particle counter (Meyer et al, 1979). 
  

(a) (b) 
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 6.3 Conclusions 

Several conclusions can be drawn from comparisons between the modeled and measured 

polarization ratios and the corresponding retrieved size distributions presented in this chapter.  

The manner in which the modeled and measured data are presented demonstrate how the multiple 

wavelengths and range of scattering angles are used together to retrieve a trimodal size 

distribution that produces the best average-fit for all wavelengths.  This measurement and 

inversion technique retrieves the average microphysical properties of the aerosols along the entire 

length of the analyzed path.  A measurement and retrieval method capable of interpreting these 

path averaged results, even in the presence of small non-uniformities along the path of the laser, 

is the ultimate goal of this work.   These cases demonstrate where a multiwavelength-

multiangular approach has a significant advantage over single wavelength bistatic, or multistatic 

techniques. 

      Ranges of the concentration, geometric mean radius, and geometric mean deviation 

for each of the three lognormal distributions collected under different aerosols conditions (patchy 

fog and haze) are examined and studied throughout this chapter.  The advantage of 

simultaneously having three wavelengths for analysis became clear during the course of the 

studies of outdoor fog inversion because of the wide range of parameterized variables within the 

inversion process.  We repeatedly found that it is possible to perform a good match between 

modeled and measured polarization ratios for a range of angles for the 650 nm and 532 nm 

wavelengths, but not for the 407 nm.  The addition of angularly resolved polarization ratios at a 

third wavelength, 407 nm, greatly reduces the solution space to a more unique solution.  Figure 

6-24 shows an example of this point; here the inversion algorithm was limited to the optimization 

of the fit of measured data at two wavelengths, instead of all three as used throughout the 

described work.  This example shows exceptional fits for both the 532 nm and 650 nm 



150 

 

wavelengths; however, the 407 nm curve has drastically deviated from the measured data, making 

the validity of the result questionable.  The power of the approach presented resides in the ability 

to simultaneously analyze the information contained in the entire dataset, which greatly increases 

the confidence of the retrieved results, and reduces the uncertainty of the conclusions.   

 
Figure 6-24: Comparison between modeled and measured polarization ratios for fog data 
collected 21/21 November at 12:55 AM, when the inversion algorithm was only required to 
interpret data for angularly resolved data on two of three wavelengths. 

 

We have shown in this chapter that although some of the outdoor datasets have notable 

fluctuations in the measured polarization ratios resulting from the architecture of the CCD array, 

we are still able to retrieve reasonable results using an averaged-best fit for all three wavelengths, 

as shown in Figs. 6-18 and 6-21.  The retrieved bimodal size distributions are reasonable for the 

weather conditions observed during the measurements, and the retrieved refractive indices are 

consistent with results reported by Shettle and Fenn (1979) for urban environments and high 

humidity (Table 6-1).   
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The multiwavelength-multistatic technique, coupled with a robust inversion algorithm 

that performs well in the presence of noise, is a promising approach to aerosol characterization.  

Knowledge gained from these initial outdoor measurements will be leveraged to design the next 

generation multistatic sensor.  A high-level design concept for this next-generation sensor is 

discussed in Chapter 7, along with additional applications of this technique beyond the 

characterization of atmospheric aerosols.      
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Chapter 7 
 

Future Developments 

The Penn State Lidar Lab has been working towards the goal of a standardized multistatic 

instrument prototype design to monitor and map the properties of atmospheric aerosols.  The 

extension of the technique to multiple wavelengths and the development of an improved 

inversion algorithm are two significant steps on the path to realizing this standardized instrument.  

While we are not ready to select the design details of the prototype instrument, we do feel that we 

can make several suggestions for this development.  It is our intention to keep the design as 

simple and inexpensive as possible, while retaining the ability to provide useful and accurate data.   

Diode-pumped Nd:YAG lasers offer the advantages of multiple wavelengths at high peak 

powers and can simultaneously produce wavelengths of 1064 nm, 532 nm, and 355 nm at high 

repetition rates.  A silicon CCD array can be used to detect all three of these wavelengths, with 

various varieties (UV, and IR enhanced) available to counteract the reduced quantum efficiency 

at 355 and 1064 nm, as compared to 532 nm, see Figure 7-1.  The differences in spectral response 

can be managed by the replacement of the diffraction grating by a high-speed automated filter 

wheel in the receiver setup.  The filter wheel can be used to examine each wavelength separately 

(which eliminates the possibility of higher orders of the 355 nm wavelength interfering with 

lower order of the 1064nm) and thus each wavelength can be integrated for different periods of 

time to maximize the signal-to-noise of the system.   
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Figure 7-1: Quantum Efficiency of silicon CCD array. (Spring, 2010) 

 
As an alternative to this architecture, dichroic optics could separate the received light into 

three channels, each being coupled to independent CCD imagers.  Similar to the approach 

developed in this work, this technique provides a way to sample the scattering phase function at 

three wavelengths simultaneously.  One difficulty experienced during our experiments was the 

changing of aerosol characteristics between polarized scattering images.  The polarization of the 

laser had to be manually changed and the CCD cameras had to be manually operated, all 

contributing to significant periods of time between scattering images.  An improved transmitter 

design would utilize an automated ferroelectric polarization rotator to quickly change the plane of 

polarization of the laser and the camera acquisition software can be used to quickly acquire 

multiple scattering images at each polarization.  Essentially, we would trigger the ferro-electric 

cell and data collection on every Q-switch event of the laser so that every pair of pulses could 

feasibly be used to perform a polarization ratio.  Using lasers with repetition rates in the hundreds 

of hertz to kilohertz, this approach would be able to accurately quantify a wide range of 

background atmospheric effects, ranging from wind variations (10s of Hz scale, to turbulence on 

the kHz scale.)  Synchronization of the camera and the laser transmitter would allow fully 

automated acquisition of scattering images at two polarizations at all three wavelengths and 

background images.  Multiple sets of these scattering images can be averaged to minimize 
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random noise and increase the signal-to-noise of the collected data.  Another important addition 

to the multistatic system would be the collection of multiwavelength extinction data.  This 

additional information would be used to scale the particle size distributions when the 

concentration of particles is such that the polarization ratio is insensitive to the molecular 

scattering contribution (see Chapter 2).  Multiwavelength extinction information would also aid 

in the determination of the complex refractive index of the aerosols.  

 Although safety is somewhat of a concern for the Nd:YAG fundamental and its 

harmonics, the high sensitivity of silicon at 532 nm lends to the requirement of a borderline Class 

IIIa to a minimal Class IIIb laser at this wavelength.  With improved optics and thermoelectrically 

cooled CCD imagers, power requirements would relax to a class IIIa level for 532 nm.  With a 

carefully optimized VIS/UV CCD detector scheme, the same could be true for the 3rd harmonic 

wavelength.  As an alternative to 1064 nm, pulsed fiber laser technology can be used to easily 

achieve adequate power at 1550 nm.  Lasers in this wavelength range are less of a concern for eye 

safety due to different optical damage mechanisms, and are easy to obtain due to developments in 

the telecom boom.  Indium gallium arsenide (InGaAs) CCD imagers are optimal for 

measurements 1300 nm to 1550 nm, and while they are more expensive than silicon, their cost is 

still reasonable. 

The system described capitalizes on commercially available components to create a 

complete multiwavelength- multiangular characterization suite that is capable of atmospheric 

characterization on the rapid time-scale compatible with background atmospheric fluctuations.  

The conceptual system would be designed for continuous measurements of the scattering phase 

function for a range of angles – with the most important angles residing in the backscattering 

hemisphere from 130 to 175°.  The hypothetical prototype wavelengths (Nd:YAG fundamental, 

second, and third harmonics) mentioned earlier can be inexpensively acquired, and span a wide 

wavelength region that is most useful for characterizing aerosol particles in the size range of the 
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fine, accumulation, and course aerosol modes with sized from 10s of nanometers to roughly 10 

microns.  A system optimized for characterization of micron-sized aerosols only would require 

NIR to MWIR wavelengths only.  Although there is a significant level of synchronization 

required for a system such as the one described, an operational instrument can be envisioned for 

various scenarios.  The setup is simple, straight forward, and can be built with a limited 

investment in components. 

7.1 Supercontinuum scattering 

A supercontinuum laser produces a broadband source that emits a continuous range of 

wavelengths across a region of the optical spectrum, oftentimes visible wavelengths.  

Supercontinuum sources are sometimes being to as “white light” lasers.  A white-light 

supercontinuum laser is generated by coupling picosecond 1.064 μm laser pulse through a 

nonlinear photonic crystal fiber, which broadens the pulse in both time and frequency due to non-

linear process of wave mixing.  Using a supercontinuum source as the transmitter for the angular 

scattering measurements would eliminate the need to align multiple, discrete diode lasers and 

would provided a larger range of different wavelengths for analysis purposes.  The wavelength 

resolution of the system would be dependent on the resolving power of the transmission 

diffraction grating and conjugate lens focusing of the scattering intensity onto the CCD array.  

The power of this technique resides in the fact that there are a continuous range of wavelengths 

available for the remote characterization of aerosols through the measurement of the polarization 

ratio at a few angles (i.e. at one pixel range).  Using such a vast array of wavelengths lends to the 

determination of the particle characteristics as well as scanning the same particles over all angles 

using a monochromatic technique.   
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To perform a cursory demonstration of continuous multiwavelength-multistatic 

scattering, a supercontinuum source was used while on loan for a few days from a company in 

Denmark, NKT Photonics A/S.  This quasi-CW laser has an output power of 3W distributed 

across a range from 500 nm to 2 µm.  A measured power spectrum of this laser operating at 40% 

of its maximum power is shown in Fig. 7-2.  Scattering measurements from generated fog were 

made using the supercontinuum source in the small PSU fog chamber described in Chapter 4.  

Figure 7-3 shows scattering images corresponding to using the three discrete lasers (407 nm, 532 

nm, and 650 nm) on the left, and the supercontinuum laser source on the right.  Ultimately, the 

analysis of a large number of closely spaced wavelengths could be used to infer additional 

characteristics of the aerosols, such as shape.  Unfortunately, these scattering measurements were 

not conducted under ideal conditions.  Following the initial laboratory experiments shown in Fig 

7-3, we have been successful in developing a parallel effort to demonstrate efficient angularly 

resolved supercontinuum scattering from aerosols.  

 
Fig. 7-2: High-power supercontinuum from NTK Photonics (Edwards, 2009) 
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Figure 7-3: Scattering image for (a) 3-λ source and (b) 4W supercontinuum source taken using 
the same camera 

7.2 Elimination of assumed particle size distributions 

Using a probability density function to describe particle size distributions is desirable 

because only two variables are required to fully define each distribution: the geometric mean and 

standard deviation.  The information in the literature that is available on atmospheric aerosol size 

distributions show trimodal size distributions to be a good assumption; however, it may also be of 

interest to apply the multiwavelength-multistatic technique to aerosol volumes that are not 

accurately characterized by predefined size distributions.  It would be beneficial to develop an 

inversion technique that does not assume a predefined distribution, but instead allows the particle 

size distribution to be defined by the scattering measurements alone.  Such an algorithm could 

operate on a ‘binning’ principle, where the particle sizes are discretized into size bins that are 

allowed to assume different concentration levels.  The accuracy of the size distribution would 

then be a function of the resolution of the size bins and the concentration ranges that each ‘bin’ is 

allowed to assume.  A genetic algorithm was designed that retrieved size distributions based on 

this concept of ‘size-binning’, and an example of the results obtained from this algorithm are 

shown in Fig 7-4.  The algorithm used 20 size bins between 1 nm and 2 μm, and 10 bit binary 

Dust on lens 
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numbers were used to represent the number density of each size bin, requiring a 200-bit binary 

number to represent a single size distribution.  The area of the size distribution is normalized to 

one, so actually retrieved size distributions would need to be scaled by the total number 

concentration of the aerosols.  This method increases the number of inversion variables from the 

two needed to describe a lognormal distribution, to 20 variables, and only covered a small range 

of particle sizes.  For time considerations, this algorithm was not considered as a viable 

alternative to the assumed trimodal lognormal distribution inversion algorithm.  With future 

improvements in computer technology and the use of multi-core programming, this type of 

inversion scheme could be extremely beneficial and practical when characterizing size 

distributions that do not necessarily conform to predefined probability density distributions. 

 

 
Figure 7-4: Genetic algorithm inversion of size distribution with no pre-defined distribution 
function. 
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7.3 Extension to non-spherical particles 

All atmospheric aerosols are not spheres.  It is reasonable to assume that the fogs and 

droplets examined in this work are spherical and that Mie scattering equations can be used to 

describe the scattering of light from these particles.  Measurements on desert dust have shown 

that the scattering phase functions of dust deviate noticeably from those predicated by Mie 

scattering equations (Horvath et al, 2006), and measurements from ice crystals in cirrus clouds 

can not be modeled using spheres.  The extension of the inversion algorithm to include non-

spherical scatterers is the next step for multistatic characterization of aerosols.  Preliminary 

studies have been done on the affects of the shape of the aerosols on the polarization ratio.  T-

matrix code, a publicly available program (Mishchenko, 2010), written by Michael Mishchenko, 

Larry Travis, and Daniel Mackowski at NASA Goddard Institute for Space Studies, that 

computes the scattering phase functions for a volume of homogenous, rotationally symmetric 

non-spherical scatterers in random orientations.  This code was used to calculate the polarization 

ratios for spheroids.  Like the Mie equations, T-matrix equations are direct solutions to Maxwell’s 

equations based on solving specific boundary conditions (Mishchenko et al, 2002).   In the T-

matrix code, a spheroid is characterized by the ratio of the principal semi-axes (a/b) and the 

radius of a sphere (rv) having ether the same volume or the same surface area (rs) (Mishchenko et 

al, 2002).  Figure 7-5 shows examples of spheroids with varying a/b ratios. 

As a first step to characterizing aerosol shape based on angular scattering measurements, 

the affect of the shape distributions of particles on the polarization ratio was examined at four 

wavelengths: 407 nm, 532 nm, 650 nm, and 1064 nm.  Figures 7-6 and 7-7 show the polarization 

ratios as a function of the shape distribution for spheroids  The same Gaussian size distribution is 

used in each calculation, indicating that the equivalent radius (based on volume) of the particles 

are the same in each of the calculations, with only the a/b ratio of the particles changing.  As the 
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variance of the Gaussian distribution used to model the shape distribution of the particles 

increases, a larger spread of non-spherical particles are included in the polarization ratio 

calculations.  Analysis of the polarization ratios reveals a decrease in the amplitude of the 

polarization ratio as the variance of the shape distribution increases with little change in the 

angular position of the peaks and troughs.  This information could be used to determine shape 

distributions from polarization ratio data.  The angular location of the polarization ratio peaks 

could be used to measure the size distribution while the magnitude of the peaks could be used to 

extract shape information from the measured data.  An extended study is required to determine if 

these measurements will have sufficient specificity to allow determination of the shape and size 

distributions.  Also further studies will discern if the trend appears across a broad range of 

situations and can be used to infer characteristics of aerosols from scattering measurements.   

 

 
Figure 7-5: Examples of spheroids with varying axial ratios (a/b) (Mishchenko, 2002, Fig. 1) 
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Figure 7-6: Polarization ratios at 1064 nm (black), 650 nm (red), 532 nm (green), and 407 nm 
(blue), as a function of shape distribution. Gaussian shape distributions were used with the mean 
and variance shown in the title of each distribution.  A fixed Gaussian size distribution was used 
with a mean radius of 0.5 μm and a variance of 0.05. 
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Figure 7-7: Polarization ratios at 1064 nm (black), 650 nm (red), 532 nm (green), and 407 nm 
(blue), as a function of shape distribution. Gaussian shape distributions were used with the mean 
and variance shown in the title of each distribution.  A fixed Gaussian size distribution was used 
with a mean radius of 0.5 μm and a variance of 0.05. 
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Chapter 8 
 

Summary and Conclusions 

There is a global need to characterize the microphysical and spatial properties of 

atmospheric aerosols in order to understand their impact on our climate and our atmosphere.  A 

detailed database of atmospheric aerosol properties from regions around the world is required to 

develop a global picture of the impact of aerosols and correctly include their effects in climate-

forecasting models.   The Penn State Lidar Laboratory has been working towards the goal of 

developing a prototype sensor and a data analysis approach to aid in mapping the spatial and 

temporal properties of atmospheric aerosols as a tool to develop this database.         

A multiwavelength-multistatic transmitter was developed to conduct experimental testing 

using three visible diode lasers for expanding the capability of multi-static remote sensing to 

multiple wavelengths.  Angular scattering measurements are simultaneously collected at three 

wavelengths by imaging three co-aligned laser beams through a transmission diffraction grating 

using a CCD camera.  Images of the scattering intensity are collected that contain the parallel and 

perpendicular polarized (measured with respect to the scattering plane) components, and a 

polarization ratio of these scattered intensities formed as a function of both wavelength and 

scattering angle.   

The use of the polarization ratio as the principal data, rather than using the scattering 

phase functions, greatly reduces the complexity of the inversion procedure by removing most of 

the effects of system non-linearities affecting the data, as well as canceling the variation in the 

path extinction between the scattering volume and the imager.  A study of the polarization ratio, 

and the proper way to model the polarization ratio using Mie equations, was conducted in order to 

understand the behavior of the data and to determine the strengths and limitations of this 
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technique.  This knowledge was required in order to design a robust inversion algorithm, which is 

capable of retrieving aerosol size distributions and refractive indices based on the polarization 

ratio data.  The development of this genetic algorithm led to a conclusion that the number of 

particle radii included in the calculation of the polarization ratio is important.  Erroneous features 

are present in the calculated polarization ratio when too few particle sizes are used to represent a 

lognormal size distribution.  Polarization ratio calculations presented in Chapter 3 show that 

~1,000 particle sizes should be included in analysis of the particle size range (single nanometers 

to 30 microns) and wavelength combinations (407 nm to 650 nm) used in this work.  We find that 

logarithmic or linear sampling of the particle sizes used in forward calculations produce nearly 

equivalent polarization ratios for the two cases explored in Chapter 3.  We conclude that the next 

generation of the developed measurement technique would benefit by the use of a linear sampling 

scheme, as it will be most robust to the large array of particle sizes and distributions encountered 

in the natural atmosphere.  Other applications that also have well defined size distributions in the 

several micron size range would also benefit from this class of approach.  The examination of the 

simulations further shows that logarithmic sampling would be the ideal choice when primarily 

concerned with accurate characterization of smaller (sub-micron) particles.    

Simulations were also performed to determine the sensitivity of the polarization ratio to 

changing concentrations of different size particles.  The molecular scattering components of the 

polarization ratio are used to scale the concentration of the lognormal size distributions used to 

represent the aerosols present in the scattering volume.  Accurate aerosol concentrations can be 

retrieved from the polarization ratio when the concentration of the aerosols are such that both the 

molecular scattering and the aerosol scattering contribute to the shape of the polarization ratio.  

This occurs at different concentrations of aerosols depending on their size in relation to the 

wavelength used for the scattering measurements.  Simulations in Chapter 2 establish 

approximate concentration ranges that can be retrieved from polarization ratio data for ultrafine 
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particles, fine mode particles, accumulation mode particles, and course mode particles when 

analyzing scattering measurements from wavelengths in the visible spectrum.  It was determined 

that the polarization ratios obtained from ultrafine particles (diameters in the 10’s of nanometers) 

is entirely insensitive to particle concentration, and wavelengths shorter than 407 nm are required 

for concentration measurements using the polarization ratio technique.  The concentration of the 

ultrafine particles can be determined from the magnitude of the scattering phase functions when a 

calibration case of clean air scattering is available.  Simulations show that concentrations in range 

of 100 to 100,000 particles/cm3 can be accurately retrieved for particles in the 100’s of 

nanometers range, and concentrations in the range of 0.1 to 1,000 particles/cm3 for micron-sized 

particles.  The retrievable concentration range for large particles, around 10 microns in diameter, 

is roughly 0.0001 to 10 particles/cm3. These conclusions are best summarized by considering 

Table 2-3.  Supporting extinction measurements made concurrently with the multiwavelength-

multistatic technique can be used to verify the concentrations retrieved from the polarization 

ratios.  When remotely characterizing concentrations well outside the retrievable ranges using the 

polarization ratio, extinction measurements can be used to determine particle concentrations.    

Three main hypotheses related to multiwavelength-multistatic light scattering for aerosol 

characterization were tested throughout this work.  It was hypothesized that the addition of 

multiple wavelengths to a previously developed multistatic technique would aid in constraining 

the solution space of reasonable aerosol size distributions that could be inferred from a single set 

of angular scattering measurements.  The advantage of multiple wavelengths was realized during 

analysis of scattering data collected from a low concentration of five micron oleic acid droplets in 

the EPA Aerosol Wind Tunnel.  The offset of the polarization ratio curves between the shortest 

wavelength of 407 nm, and the 532 nm and 650 nm curves led to the unexpected discovery of a 

large concentration of ultrafine particles.  Discussion with the facility director at the EPA 

subsequently confirmed that the vibration process used to create each five micron particle also 
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results in numerous very small ‘break-off’ particles.  Through the analysis of the polarization 

ratios, specifically the offset between the blue, and green and red curves, we conclude that the 

developed approach led to the retrieval of a lognormal size distribution for the ultrafine particles, 

with a mean diameter around 20 nanometers, and a geometric standard deviation of 

approximately 1.3.  The concentration of these particles was on the order of 104 particles/cm3.   

The benefit of multiple wavelengths was also highlighted by the analysis of outdoor 

multiwavelength scattering measurements collected the evening of 20/21 November.  Trimodal 

particle size distributions were retrieved from multiwavelength-multistatic measurements in the 

presence of rapidly changing outdoor aerosol concentrations by obtaining the best average fit for 

all three wavelength polarization ratio curves.  Analysis of the multiangular measurements at 

three wavelengths made it possible to identify features in the polarization ratio curves that were 

due to non-uniformities in concentration along the measurement path, rather than from the 

particle size distribution.  This demonstrates the strength of both the approach and algorithm 

when it is used for remote characterization of aerosols under non-ideal conditions. 

A second hypothesis explored in this work was the ability to retrieve complex refractive 

index as a function of wavelength from the multiwavelength-multistatic data.  Scattering 

measurements collected from fog generated in the PSU aerosol chamber and in the EPA Aerosol 

Wind Tunnel were used to explore the effect of the wavelength-dependent refractive index on the 

fit between measured and modeled polarization ratios.  We conclude that the algorithmic result is 

improved relative to the ground-truth measurement when the refractive index is incorporated as a 

variable in the inversion procedure.  By allowing the refractive index as a function of wavelength 

to vary, we improve the fit between modeled and measured polarization ratios compared to the fit 

that is obtained when using a single refractive index for all three wavelengths.  The real part of 

the refractive index was investigate in step sizes of 0.005 and the imaginary part was explored 

using only 8 different values between 0 and 0.1, due to the time and memory required for each 



167 

 

generated look up table of scattering intensities.  A finer resolution of complex refractive indices 

would most likely improve the fits obtained between measured and modeled polarization ratios 

beyond what is accomplished in this work.  

The third hypothesis explored in the present work is the ability of a stochastic search 

inversion algorithm to retrieve lognormal size distributions and complex refractive indices from 

measured scattering data used to form multiwavelength polarization ratios.  Prior inversion 

algorithms designed to retrieve aerosol size distributions from the polarization ratio have used 

gradient information to minimize the mean-squared error between modeled and measured data.  

The derivative of the polarization ratio was required for this technique, and it is extremely 

difficult to obtain (an analytical solution may not exist), particularly when including the complex 

refractive index as a variable (Novitsky, 2002).  Based on the experiences and insight gleaned 

from the efforts of prior students, it was determined that a stochastic algorithm may provide a 

better result.  

A genetic algorithm (GA) was designed that retrieves lognormal size distributions for up 

to three particle size distributions simultaneously present in measured polarization ratio data.  The 

algorithm is designed to minimize the squared error between measured polarization data and 

polarization ratios calculated using the Mie solutions for spherical scatterers built upon 

Maxwell’s equations.  Convergence of the genetic algorithm does not necessarily produce the 

global optimum, as the discrete sampling of the solution space could prohibit the algorithm from 

being able to select that optimum solution.  Repeat runs of the GA often return extremely similar 

results, indicating that it is finding the most likely area of the global optimum in the solution 

space.  A second algorithm, such as a grid search or a Newton-Rhapson analysis, can be used to 

locate the solution that produces the smallest error within the smaller solution space.  Inversions 

of simulated data presented in Chapter 3 show that the algorithm returned geometric mean radii 

and geometric standard deviations within 2% of the correct value (see Table 3-2) when inverting 
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a single lognormal probability size distribution from simulated polarization ratios that include 

random Gaussian noise added to decrease the signal-to-noise ratio to 25.  Investigation found that 

the concentrations retrieved from the simulated data showed errors as high as 400% when the 

polarization ratios were not sufficiently unique.  The particle concentrations showed large errors 

that occur in certain regions of the size/wavelength and number density space.  The genetic 

algorithm performed reasonably well when retrieving results using a single complex refractive 

index for all three wavelengths when finding the lognormal particle size parameters (Table 3-4).  

The calculation including the complex refractive index as a variable within the algorithm 

increased the average time of convergence from one minute to roughly an hour.  It was found that 

little advantage in accuracy is gained by allowing the complex refractive index for each 

wavelength to independently vary and doing so severely degrades the speed of converge of the 

algorithm.  The necessity of loading a different lookup table of unit scattering intensities for each 

wavelength/size distribution combination vastly increases the amount of time it takes the 

algorithm to calculate the fitness of each possible solution that was generated.  The addition of six 

more retrievable variables (a real and imaginary refractive index for each wavelength) requires a 

much larger population size and a later generation cut-off to obtain convergence of the algorithm.  

Finally, the algorithm was tested for the case of a trimodal size distribution with a varying 

refractive index with positive results.  Three inversion runs of the algorithm on simulated noisy 

data (Table 3-7) showed that the algorithm could retrieved a trimodal size distribution and a 

single complex refractive index that produced a very good fit between the simulated noisy 

polarization ratios and the forward-calculated polarization ratios (see Figs. 3-13 and 3-14).  It is 

currently much faster to run the algorithm with a fixed refractive index for all three wavelengths, 

and then use a localized grid search to optimize the complex refractive indices as a function of 

wavelength, rather than allowing each complex index to vary independently within the algorithm.  

The algorithm architecture is such that is could easily be adapted to multi-core parallel 
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processing, which would vastly improve the analysis speed. While the speed of the GA is not 

currently at a real-time processing level, the algorithm is a vast time-improvement over the ‘guess 

and check’ method that we have been forced to use in the past to invert measured polarization 

ratio data. 

The multiwavelength-multistatic technique shows great promise for an atmospheric 

aerosol characterization technique, particularly in situations where the solution space can be 

limited by a priori knowledge of the scattering volumes size range or composition.  Instrument 

and data collection improvements outlined in Chapter 7 will greatly reduce the uncertainty of the 

measured polarization ratios and increase the confidence of the size distributions and refractive 

index results obtained using this technique.  Improvements in the speed of the inversion algorithm 

are also required before his technique could be consistently applied to atmospheric aerosol 

characterization for an extended period of measurements.    
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